Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(p^{3}+q^{3}\right)\left(p^{6}-p^{3}q^{3}+q^{6}\right)
Rewrite p^{9}+q^{9} as \left(p^{3}\right)^{3}+\left(q^{3}\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(p+q\right)\left(p^{2}-pq+q^{2}\right)
Consider p^{3}+q^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(p+q\right)\left(p^{2}-pq+q^{2}\right)\left(p^{6}-p^{3}q^{3}+q^{6}\right)
Rewrite the complete factored expression.