Solve for p
p=-50
p=32
Share
Copied to clipboard
p^{2}-1600=-18p
Subtract 1600 from both sides.
p^{2}-1600+18p=0
Add 18p to both sides.
p^{2}+18p-1600=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=18 ab=-1600
To solve the equation, factor p^{2}+18p-1600 using formula p^{2}+\left(a+b\right)p+ab=\left(p+a\right)\left(p+b\right). To find a and b, set up a system to be solved.
-1,1600 -2,800 -4,400 -5,320 -8,200 -10,160 -16,100 -20,80 -25,64 -32,50 -40,40
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1600.
-1+1600=1599 -2+800=798 -4+400=396 -5+320=315 -8+200=192 -10+160=150 -16+100=84 -20+80=60 -25+64=39 -32+50=18 -40+40=0
Calculate the sum for each pair.
a=-32 b=50
The solution is the pair that gives sum 18.
\left(p-32\right)\left(p+50\right)
Rewrite factored expression \left(p+a\right)\left(p+b\right) using the obtained values.
p=32 p=-50
To find equation solutions, solve p-32=0 and p+50=0.
p^{2}-1600=-18p
Subtract 1600 from both sides.
p^{2}-1600+18p=0
Add 18p to both sides.
p^{2}+18p-1600=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=18 ab=1\left(-1600\right)=-1600
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as p^{2}+ap+bp-1600. To find a and b, set up a system to be solved.
-1,1600 -2,800 -4,400 -5,320 -8,200 -10,160 -16,100 -20,80 -25,64 -32,50 -40,40
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1600.
-1+1600=1599 -2+800=798 -4+400=396 -5+320=315 -8+200=192 -10+160=150 -16+100=84 -20+80=60 -25+64=39 -32+50=18 -40+40=0
Calculate the sum for each pair.
a=-32 b=50
The solution is the pair that gives sum 18.
\left(p^{2}-32p\right)+\left(50p-1600\right)
Rewrite p^{2}+18p-1600 as \left(p^{2}-32p\right)+\left(50p-1600\right).
p\left(p-32\right)+50\left(p-32\right)
Factor out p in the first and 50 in the second group.
\left(p-32\right)\left(p+50\right)
Factor out common term p-32 by using distributive property.
p=32 p=-50
To find equation solutions, solve p-32=0 and p+50=0.
p^{2}-1600=-18p
Subtract 1600 from both sides.
p^{2}-1600+18p=0
Add 18p to both sides.
p^{2}+18p-1600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-18±\sqrt{18^{2}-4\left(-1600\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 18 for b, and -1600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-18±\sqrt{324-4\left(-1600\right)}}{2}
Square 18.
p=\frac{-18±\sqrt{324+6400}}{2}
Multiply -4 times -1600.
p=\frac{-18±\sqrt{6724}}{2}
Add 324 to 6400.
p=\frac{-18±82}{2}
Take the square root of 6724.
p=\frac{64}{2}
Now solve the equation p=\frac{-18±82}{2} when ± is plus. Add -18 to 82.
p=32
Divide 64 by 2.
p=-\frac{100}{2}
Now solve the equation p=\frac{-18±82}{2} when ± is minus. Subtract 82 from -18.
p=-50
Divide -100 by 2.
p=32 p=-50
The equation is now solved.
p^{2}+18p=1600
Add 18p to both sides.
p^{2}+18p+9^{2}=1600+9^{2}
Divide 18, the coefficient of the x term, by 2 to get 9. Then add the square of 9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+18p+81=1600+81
Square 9.
p^{2}+18p+81=1681
Add 1600 to 81.
\left(p+9\right)^{2}=1681
Factor p^{2}+18p+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+9\right)^{2}}=\sqrt{1681}
Take the square root of both sides of the equation.
p+9=41 p+9=-41
Simplify.
p=32 p=-50
Subtract 9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}