Solve for p (complex solution)
p=\sqrt{5}-2\approx 0.236067977
p=-\left(\sqrt{5}+2\right)\approx -4.236067977
Solve for p
p=\sqrt{5}-2\approx 0.236067977
p=-\sqrt{5}-2\approx -4.236067977
Share
Copied to clipboard
p^{2}+4p=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p^{2}+4p-1=1-1
Subtract 1 from both sides of the equation.
p^{2}+4p-1=0
Subtracting 1 from itself leaves 0.
p=\frac{-4±\sqrt{4^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-4±\sqrt{16-4\left(-1\right)}}{2}
Square 4.
p=\frac{-4±\sqrt{16+4}}{2}
Multiply -4 times -1.
p=\frac{-4±\sqrt{20}}{2}
Add 16 to 4.
p=\frac{-4±2\sqrt{5}}{2}
Take the square root of 20.
p=\frac{2\sqrt{5}-4}{2}
Now solve the equation p=\frac{-4±2\sqrt{5}}{2} when ± is plus. Add -4 to 2\sqrt{5}.
p=\sqrt{5}-2
Divide -4+2\sqrt{5} by 2.
p=\frac{-2\sqrt{5}-4}{2}
Now solve the equation p=\frac{-4±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -4.
p=-\sqrt{5}-2
Divide -4-2\sqrt{5} by 2.
p=\sqrt{5}-2 p=-\sqrt{5}-2
The equation is now solved.
p^{2}+4p=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}+4p+2^{2}=1+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+4p+4=1+4
Square 2.
p^{2}+4p+4=5
Add 1 to 4.
\left(p+2\right)^{2}=5
Factor p^{2}+4p+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
p+2=\sqrt{5} p+2=-\sqrt{5}
Simplify.
p=\sqrt{5}-2 p=-\sqrt{5}-2
Subtract 2 from both sides of the equation.
p^{2}+4p=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p^{2}+4p-1=1-1
Subtract 1 from both sides of the equation.
p^{2}+4p-1=0
Subtracting 1 from itself leaves 0.
p=\frac{-4±\sqrt{4^{2}-4\left(-1\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-4±\sqrt{16-4\left(-1\right)}}{2}
Square 4.
p=\frac{-4±\sqrt{16+4}}{2}
Multiply -4 times -1.
p=\frac{-4±\sqrt{20}}{2}
Add 16 to 4.
p=\frac{-4±2\sqrt{5}}{2}
Take the square root of 20.
p=\frac{2\sqrt{5}-4}{2}
Now solve the equation p=\frac{-4±2\sqrt{5}}{2} when ± is plus. Add -4 to 2\sqrt{5}.
p=\sqrt{5}-2
Divide -4+2\sqrt{5} by 2.
p=\frac{-2\sqrt{5}-4}{2}
Now solve the equation p=\frac{-4±2\sqrt{5}}{2} when ± is minus. Subtract 2\sqrt{5} from -4.
p=-\sqrt{5}-2
Divide -4-2\sqrt{5} by 2.
p=\sqrt{5}-2 p=-\sqrt{5}-2
The equation is now solved.
p^{2}+4p=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
p^{2}+4p+2^{2}=1+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}+4p+4=1+4
Square 2.
p^{2}+4p+4=5
Add 1 to 4.
\left(p+2\right)^{2}=5
Factor p^{2}+4p+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+2\right)^{2}}=\sqrt{5}
Take the square root of both sides of the equation.
p+2=\sqrt{5} p+2=-\sqrt{5}
Simplify.
p=\sqrt{5}-2 p=-\sqrt{5}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}