Solve for q (complex solution)
\left\{\begin{matrix}q=-\frac{2x-p+10}{x+2}\text{, }&x\neq -2\\q\in \mathrm{C}\text{, }&p=6\text{ and }x=-2\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=-\frac{2x-p+10}{x+2}\text{, }&x\neq -2\\q\in \mathrm{R}\text{, }&p=6\text{ and }x=-2\end{matrix}\right.
Solve for p
p=qx+2x+2q+10
Graph
Share
Copied to clipboard
xq+2x+2q+10=p
Swap sides so that all variable terms are on the left hand side.
xq+2q+10=p-2x
Subtract 2x from both sides.
xq+2q=p-2x-10
Subtract 10 from both sides.
\left(x+2\right)q=p-2x-10
Combine all terms containing q.
\left(x+2\right)q=-2x+p-10
The equation is in standard form.
\frac{\left(x+2\right)q}{x+2}=\frac{-2x+p-10}{x+2}
Divide both sides by x+2.
q=\frac{-2x+p-10}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
xq+2x+2q+10=p
Swap sides so that all variable terms are on the left hand side.
xq+2q+10=p-2x
Subtract 2x from both sides.
xq+2q=p-2x-10
Subtract 10 from both sides.
\left(x+2\right)q=p-2x-10
Combine all terms containing q.
\left(x+2\right)q=-2x+p-10
The equation is in standard form.
\frac{\left(x+2\right)q}{x+2}=\frac{-2x+p-10}{x+2}
Divide both sides by x+2.
q=\frac{-2x+p-10}{x+2}
Dividing by x+2 undoes the multiplication by x+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}