Solve for q
\left\{\begin{matrix}\\q=\frac{1}{12}-p\text{, }&\text{unconditionally}\\q\in \mathrm{R}\text{, }&p=0\end{matrix}\right.
Solve for p
p=\frac{1}{12}-q
p=0
Share
Copied to clipboard
p=12p\left(p+q\right)
Multiply 4 and 3 to get 12.
p=12p^{2}+12pq
Use the distributive property to multiply 12p by p+q.
12p^{2}+12pq=p
Swap sides so that all variable terms are on the left hand side.
12pq=p-12p^{2}
Subtract 12p^{2} from both sides.
\frac{12pq}{12p}=\frac{p\left(1-12p\right)}{12p}
Divide both sides by 12p.
q=\frac{p\left(1-12p\right)}{12p}
Dividing by 12p undoes the multiplication by 12p.
q=\frac{1}{12}-p
Divide p\left(1-12p\right) by 12p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}