Solve for o
o=\frac{2\sqrt{5}}{5t\theta }
\theta \neq 0\text{ and }t\neq 0
Solve for t
t=\frac{2\sqrt{5}}{5o\theta }
\theta \neq 0\text{ and }o\neq 0
Graph
Share
Copied to clipboard
ot\theta =\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
ot\theta =\frac{2\sqrt{5}}{5}
The square of \sqrt{5} is 5.
5ot\theta =2\sqrt{5}
Multiply both sides of the equation by 5.
5t\theta o=2\sqrt{5}
The equation is in standard form.
\frac{5t\theta o}{5t\theta }=\frac{2\sqrt{5}}{5t\theta }
Divide both sides by 5t\theta .
o=\frac{2\sqrt{5}}{5t\theta }
Dividing by 5t\theta undoes the multiplication by 5t\theta .
ot\theta =\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
ot\theta =\frac{2\sqrt{5}}{5}
The square of \sqrt{5} is 5.
5ot\theta =2\sqrt{5}
Multiply both sides of the equation by 5.
5o\theta t=2\sqrt{5}
The equation is in standard form.
\frac{5o\theta t}{5o\theta }=\frac{2\sqrt{5}}{5o\theta }
Divide both sides by 5o\theta .
t=\frac{2\sqrt{5}}{5o\theta }
Dividing by 5o\theta undoes the multiplication by 5o\theta .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}