Solve for n
n=-4+\frac{15}{x}
x\neq 0
Solve for x
x=\frac{15}{n+4}
n\neq -4
Graph
Share
Copied to clipboard
nx=-4x+10+5
Add 5 to both sides.
nx=-4x+15
Add 10 and 5 to get 15.
xn=15-4x
The equation is in standard form.
\frac{xn}{x}=\frac{15-4x}{x}
Divide both sides by x.
n=\frac{15-4x}{x}
Dividing by x undoes the multiplication by x.
n=-4+\frac{15}{x}
Divide -4x+15 by x.
nx-5+4x=10
Add 4x to both sides.
nx+4x=10+5
Add 5 to both sides.
nx+4x=15
Add 10 and 5 to get 15.
\left(n+4\right)x=15
Combine all terms containing x.
\frac{\left(n+4\right)x}{n+4}=\frac{15}{n+4}
Divide both sides by n+4.
x=\frac{15}{n+4}
Dividing by n+4 undoes the multiplication by n+4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}