Solve for h (complex solution)
\left\{\begin{matrix}h=\frac{12-4p-nx^{2}}{px}\text{, }&x\neq 0\text{ and }p\neq 0\\h\in \mathrm{C}\text{, }&\left(p=0\text{ and }n=\frac{12}{x^{2}}\text{ and }x\neq 0\right)\text{ or }\left(p=3\text{ and }x=0\right)\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=-\frac{hpx+4p-12}{x^{2}}\text{, }&x\neq 0\\n\in \mathrm{C}\text{, }&p=3\text{ and }x=0\end{matrix}\right.
Solve for h
\left\{\begin{matrix}h=\frac{12-4p-nx^{2}}{px}\text{, }&x\neq 0\text{ and }p\neq 0\\h\in \mathrm{R}\text{, }&\left(p=0\text{ and }n=\frac{12}{x^{2}}\text{ and }x\neq 0\right)\text{ or }\left(p=3\text{ and }x=0\right)\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{hpx+4p-12}{x^{2}}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&p=3\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
-4p-pxh=nx^{2}-12
Swap sides so that all variable terms are on the left hand side.
-pxh=nx^{2}-12+4p
Add 4p to both sides.
\left(-px\right)h=nx^{2}+4p-12
The equation is in standard form.
\frac{\left(-px\right)h}{-px}=\frac{nx^{2}+4p-12}{-px}
Divide both sides by -px.
h=\frac{nx^{2}+4p-12}{-px}
Dividing by -px undoes the multiplication by -px.
h=-\frac{nx^{2}+4p-12}{px}
Divide nx^{2}-12+4p by -px.
nx^{2}=-4p-pxh+12
Add 12 to both sides.
nx^{2}=-hpx-4p+12
Reorder the terms.
x^{2}n=12-4p-hpx
The equation is in standard form.
\frac{x^{2}n}{x^{2}}=\frac{12-4p-hpx}{x^{2}}
Divide both sides by x^{2}.
n=\frac{12-4p-hpx}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
-4p-pxh=nx^{2}-12
Swap sides so that all variable terms are on the left hand side.
-pxh=nx^{2}-12+4p
Add 4p to both sides.
\left(-px\right)h=nx^{2}+4p-12
The equation is in standard form.
\frac{\left(-px\right)h}{-px}=\frac{nx^{2}+4p-12}{-px}
Divide both sides by -px.
h=\frac{nx^{2}+4p-12}{-px}
Dividing by -px undoes the multiplication by -px.
h=-\frac{nx^{2}+4p-12}{px}
Divide nx^{2}-12+4p by -px.
nx^{2}=-4p-pxh+12
Add 12 to both sides.
nx^{2}=-hpx-4p+12
Reorder the terms.
x^{2}n=12-4p-hpx
The equation is in standard form.
\frac{x^{2}n}{x^{2}}=\frac{12-4p-hpx}{x^{2}}
Divide both sides by x^{2}.
n=\frac{12-4p-hpx}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}