Solve for m
\left\{\begin{matrix}m=-\frac{nx^{2}+y}{z}\text{, }&z\neq 0\\m\in \mathrm{R}\text{, }&y=-nx^{2}\text{ and }z=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=-\frac{y+mz}{x^{2}}\text{, }&x\neq 0\\n\in \mathrm{R}\text{, }&y=-mz\text{ and }x=0\end{matrix}\right.
Share
Copied to clipboard
mz+y=-nx^{2}
Subtract nx^{2} from both sides. Anything subtracted from zero gives its negation.
mz=-nx^{2}-y
Subtract y from both sides.
zm=-nx^{2}-y
The equation is in standard form.
\frac{zm}{z}=\frac{-nx^{2}-y}{z}
Divide both sides by z.
m=\frac{-nx^{2}-y}{z}
Dividing by z undoes the multiplication by z.
m=-\frac{nx^{2}+y}{z}
Divide -nx^{2}-y by z.
nx^{2}+y=-mz
Subtract mz from both sides. Anything subtracted from zero gives its negation.
nx^{2}=-mz-y
Subtract y from both sides.
nx^{2}=-y-mz
Reorder the terms.
x^{2}n=-y-mz
The equation is in standard form.
\frac{x^{2}n}{x^{2}}=\frac{-y-mz}{x^{2}}
Divide both sides by x^{2}.
n=\frac{-y-mz}{x^{2}}
Dividing by x^{2} undoes the multiplication by x^{2}.
n=-\frac{y+mz}{x^{2}}
Divide -y-mz by x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}