Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{\sqrt{a-3}}{x}\text{, }&x\neq 0\\n\in \mathrm{C}\text{, }&a=3\text{ and }x=0\end{matrix}\right.
Solve for a
a=\left(nx\right)^{2}+3
\left(n\leq 0\text{ and }x\leq 0\right)\text{ or }\left(x\geq 0\text{ and }n\geq 0\right)
Solve for n
\left\{\begin{matrix}n=\frac{\sqrt{a-3}}{x}\text{, }&x\neq 0\text{ and }a\geq 3\\n\in \mathrm{R}\text{, }&x=0\text{ and }a=3\end{matrix}\right.
Solve for a (complex solution)
a=\left(nx\right)^{2}+3
arg(nx)<\pi \text{ or }x=0\text{ or }n=0
Graph
Share
Copied to clipboard
xn=\sqrt{a-3}
The equation is in standard form.
\frac{xn}{x}=\frac{\sqrt{a-3}}{x}
Divide both sides by x.
n=\frac{\sqrt{a-3}}{x}
Dividing by x undoes the multiplication by x.
\sqrt{a-3}=nx
Swap sides so that all variable terms are on the left hand side.
a-3=n^{2}x^{2}
Square both sides of the equation.
a-3-\left(-3\right)=n^{2}x^{2}-\left(-3\right)
Add 3 to both sides of the equation.
a=n^{2}x^{2}-\left(-3\right)
Subtracting -3 from itself leaves 0.
a=n^{2}x^{2}+3
Subtract -3 from n^{2}x^{2}.
xn=\sqrt{a-3}
The equation is in standard form.
\frac{xn}{x}=\frac{\sqrt{a-3}}{x}
Divide both sides by x.
n=\frac{\sqrt{a-3}}{x}
Dividing by x undoes the multiplication by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}