Solve for n
n=\frac{72}{p_{2}}
p_{2}\neq 0
Solve for p_2
p_{2}=\frac{72}{n}
n\neq 0
Share
Copied to clipboard
p_{2}n=72
The equation is in standard form.
\frac{p_{2}n}{p_{2}}=\frac{72}{p_{2}}
Divide both sides by p_{2}.
n=\frac{72}{p_{2}}
Dividing by p_{2} undoes the multiplication by p_{2}.
np_{2}=72
The equation is in standard form.
\frac{np_{2}}{n}=\frac{72}{n}
Divide both sides by n.
p_{2}=\frac{72}{n}
Dividing by n undoes the multiplication by n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}