Solve for n
n=\frac{36n_{3}-10n_{1}}{13}
Solve for n_1
n_{1}=\frac{18n_{3}}{5}-\frac{13n}{10}
Share
Copied to clipboard
2n_{1}+2.6n=7.2n_{3}
Multiply both sides of the equation by 2.
2.6n=7.2n_{3}-2n_{1}
Subtract 2n_{1} from both sides.
2.6n=\frac{36n_{3}}{5}-2n_{1}
The equation is in standard form.
\frac{2.6n}{2.6}=\frac{\frac{36n_{3}}{5}-2n_{1}}{2.6}
Divide both sides of the equation by 2.6, which is the same as multiplying both sides by the reciprocal of the fraction.
n=\frac{\frac{36n_{3}}{5}-2n_{1}}{2.6}
Dividing by 2.6 undoes the multiplication by 2.6.
n=\frac{36n_{3}-10n_{1}}{13}
Divide \frac{36n_{3}}{5}-2n_{1} by 2.6 by multiplying \frac{36n_{3}}{5}-2n_{1} by the reciprocal of 2.6.
2n_{1}+2.6n=7.2n_{3}
Multiply both sides of the equation by 2.
2n_{1}=7.2n_{3}-2.6n
Subtract 2.6n from both sides.
2n_{1}=\frac{36n_{3}-13n}{5}
The equation is in standard form.
\frac{2n_{1}}{2}=\frac{36n_{3}-13n}{2\times 5}
Divide both sides by 2.
n_{1}=\frac{36n_{3}-13n}{2\times 5}
Dividing by 2 undoes the multiplication by 2.
n_{1}=\frac{18n_{3}}{5}-\frac{13n}{10}
Divide \frac{36n_{3}-13n}{5} by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}