Solve for K
\left\{\begin{matrix}\\K=3-n\text{, }&\text{unconditionally}\\K\in \mathrm{R}\text{, }&n=-1\end{matrix}\right.
Solve for n
n=-1
n=3-K
Share
Copied to clipboard
\left(n+1\right)K=-n^{2}+2n+3
Combine all terms containing K.
\left(n+1\right)K=3+2n-n^{2}
The equation is in standard form.
\frac{\left(n+1\right)K}{n+1}=-\frac{\left(n-3\right)\left(n+1\right)}{n+1}
Divide both sides by 1+n.
K=-\frac{\left(n-3\right)\left(n+1\right)}{n+1}
Dividing by 1+n undoes the multiplication by 1+n.
K=3-n
Divide -\left(-3+n\right)\left(1+n\right) by 1+n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}