Solve for n_2
n_{2}=\frac{2x+5}{x+3}
x\neq -3
Solve for x
x=-\frac{3n_{2}-5}{n_{2}-2}
n_{2}\neq 2
Graph
Share
Copied to clipboard
n_{2}x+3n_{2}-\left(2x-7\right)=12
Use the distributive property to multiply n_{2} by x+3.
n_{2}x+3n_{2}-2x+7=12
To find the opposite of 2x-7, find the opposite of each term.
n_{2}x+3n_{2}+7=12+2x
Add 2x to both sides.
n_{2}x+3n_{2}=12+2x-7
Subtract 7 from both sides.
n_{2}x+3n_{2}=5+2x
Subtract 7 from 12 to get 5.
\left(x+3\right)n_{2}=5+2x
Combine all terms containing n_{2}.
\left(x+3\right)n_{2}=2x+5
The equation is in standard form.
\frac{\left(x+3\right)n_{2}}{x+3}=\frac{2x+5}{x+3}
Divide both sides by x+3.
n_{2}=\frac{2x+5}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
n_{2}x+3n_{2}-\left(2x-7\right)=12
Use the distributive property to multiply n_{2} by x+3.
n_{2}x+3n_{2}-2x+7=12
To find the opposite of 2x-7, find the opposite of each term.
n_{2}x-2x+7=12-3n_{2}
Subtract 3n_{2} from both sides.
n_{2}x-2x=12-3n_{2}-7
Subtract 7 from both sides.
n_{2}x-2x=5-3n_{2}
Subtract 7 from 12 to get 5.
\left(n_{2}-2\right)x=5-3n_{2}
Combine all terms containing x.
\frac{\left(n_{2}-2\right)x}{n_{2}-2}=\frac{5-3n_{2}}{n_{2}-2}
Divide both sides by n_{2}-2.
x=\frac{5-3n_{2}}{n_{2}-2}
Dividing by n_{2}-2 undoes the multiplication by n_{2}-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}