Solve for n
n=-\frac{2\left(3-2x\right)}{x-2}
x\neq 2
Solve for x
x=-\frac{2\left(3-n\right)}{n-4}
n\neq 4
Graph
Share
Copied to clipboard
nx-2n+x=5\left(x-3\right)+9
Use the distributive property to multiply n by x-2.
nx-2n+x=5x-15+9
Use the distributive property to multiply 5 by x-3.
nx-2n+x=5x-6
Add -15 and 9 to get -6.
nx-2n=5x-6-x
Subtract x from both sides.
nx-2n=4x-6
Combine 5x and -x to get 4x.
\left(x-2\right)n=4x-6
Combine all terms containing n.
\frac{\left(x-2\right)n}{x-2}=\frac{4x-6}{x-2}
Divide both sides by x-2.
n=\frac{4x-6}{x-2}
Dividing by x-2 undoes the multiplication by x-2.
n=\frac{2\left(2x-3\right)}{x-2}
Divide 4x-6 by x-2.
nx-2n+x=5\left(x-3\right)+9
Use the distributive property to multiply n by x-2.
nx-2n+x=5x-15+9
Use the distributive property to multiply 5 by x-3.
nx-2n+x=5x-6
Add -15 and 9 to get -6.
nx-2n+x-5x=-6
Subtract 5x from both sides.
nx-2n-4x=-6
Combine x and -5x to get -4x.
nx-4x=-6+2n
Add 2n to both sides.
\left(n-4\right)x=-6+2n
Combine all terms containing x.
\left(n-4\right)x=2n-6
The equation is in standard form.
\frac{\left(n-4\right)x}{n-4}=\frac{2n-6}{n-4}
Divide both sides by n-4.
x=\frac{2n-6}{n-4}
Dividing by n-4 undoes the multiplication by n-4.
x=\frac{2\left(n-3\right)}{n-4}
Divide -6+2n by n-4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}