Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

2018n^{2}-n-\left(n-1\right)\left(2018\left(n-1\right)-1\right)
Use the distributive property to multiply n by 2018n-1.
2018n^{2}-n-\left(n-1\right)\left(2018n-2018-1\right)
Use the distributive property to multiply 2018 by n-1.
2018n^{2}-n-\left(n-1\right)\left(2018n-2019\right)
Subtract 1 from -2018 to get -2019.
2018n^{2}-n-\left(2018n^{2}-2019n-2018n+2019\right)
Apply the distributive property by multiplying each term of n-1 by each term of 2018n-2019.
2018n^{2}-n-\left(2018n^{2}-4037n+2019\right)
Combine -2019n and -2018n to get -4037n.
2018n^{2}-n-2018n^{2}-\left(-4037n\right)-2019
To find the opposite of 2018n^{2}-4037n+2019, find the opposite of each term.
2018n^{2}-n-2018n^{2}+4037n-2019
The opposite of -4037n is 4037n.
-n+4037n-2019
Combine 2018n^{2} and -2018n^{2} to get 0.
4036n-2019
Combine -n and 4037n to get 4036n.
2018n^{2}-n-\left(n-1\right)\left(2018\left(n-1\right)-1\right)
Use the distributive property to multiply n by 2018n-1.
2018n^{2}-n-\left(n-1\right)\left(2018n-2018-1\right)
Use the distributive property to multiply 2018 by n-1.
2018n^{2}-n-\left(n-1\right)\left(2018n-2019\right)
Subtract 1 from -2018 to get -2019.
2018n^{2}-n-\left(2018n^{2}-2019n-2018n+2019\right)
Apply the distributive property by multiplying each term of n-1 by each term of 2018n-2019.
2018n^{2}-n-\left(2018n^{2}-4037n+2019\right)
Combine -2019n and -2018n to get -4037n.
2018n^{2}-n-2018n^{2}-\left(-4037n\right)-2019
To find the opposite of 2018n^{2}-4037n+2019, find the opposite of each term.
2018n^{2}-n-2018n^{2}+4037n-2019
The opposite of -4037n is 4037n.
-n+4037n-2019
Combine 2018n^{2} and -2018n^{2} to get 0.
4036n-2019
Combine -n and 4037n to get 4036n.