Solve for n
n=\frac{6}{xy\left(2-z^{2}\right)}
y\neq 0\text{ and }x\neq 0\text{ and }|z|\neq \sqrt{2}
Solve for x
x=\frac{6}{ny\left(2-z^{2}\right)}
y\neq 0\text{ and }n\neq 0\text{ and }|z|\neq \sqrt{2}
Share
Copied to clipboard
n\times 2xy-z^{2}xyn=6
Multiply z and z to get z^{2}.
-nxyz^{2}+2nxy=6
Reorder the terms.
\left(-xyz^{2}+2xy\right)n=6
Combine all terms containing n.
\left(2xy-xyz^{2}\right)n=6
The equation is in standard form.
\frac{\left(2xy-xyz^{2}\right)n}{2xy-xyz^{2}}=\frac{6}{2xy-xyz^{2}}
Divide both sides by -xyz^{2}+2xy.
n=\frac{6}{2xy-xyz^{2}}
Dividing by -xyz^{2}+2xy undoes the multiplication by -xyz^{2}+2xy.
n=\frac{6}{xy\left(2-z^{2}\right)}
Divide 6 by -xyz^{2}+2xy.
n\times 2xy-z^{2}xyn=6
Multiply z and z to get z^{2}.
-nxyz^{2}+2nxy=6
Reorder the terms.
\left(-nyz^{2}+2ny\right)x=6
Combine all terms containing x.
\left(2ny-nyz^{2}\right)x=6
The equation is in standard form.
\frac{\left(2ny-nyz^{2}\right)x}{2ny-nyz^{2}}=\frac{6}{2ny-nyz^{2}}
Divide both sides by 2yn-ynz^{2}.
x=\frac{6}{2ny-nyz^{2}}
Dividing by 2yn-ynz^{2} undoes the multiplication by 2yn-ynz^{2}.
x=\frac{6}{ny\left(2-z^{2}\right)}
Divide 6 by 2yn-ynz^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}