Evaluate
-\frac{2n+1}{2\left(n+1\right)}
Expand
-\frac{2n+1}{2\left(n+1\right)}
Share
Copied to clipboard
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Subtract \frac{3}{4} from \frac{3}{4} to get 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Factor 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2n and 2\left(n+1\right) is 2n\left(n+1\right). Multiply -\frac{1}{2n} times \frac{n+1}{n+1}. Multiply \frac{1}{2\left(n+1\right)} times \frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Since -\frac{n+1}{2n\left(n+1\right)} and \frac{n}{2n\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Do the multiplications in -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Combine like terms in -n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Express n\times \frac{-2n-1}{2n\left(n+1\right)} as a single fraction.
\frac{-2n-1}{2\left(n+1\right)}
Cancel out n in both numerator and denominator.
\frac{-2n-1}{2n+2}
Use the distributive property to multiply 2 by n+1.
n\left(-\frac{1}{2n}-\frac{1}{2n+2}\right)
Subtract \frac{3}{4} from \frac{3}{4} to get 0.
n\left(-\frac{1}{2n}-\frac{1}{2\left(n+1\right)}\right)
Factor 2n+2.
n\left(-\frac{n+1}{2n\left(n+1\right)}-\frac{n}{2n\left(n+1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2n and 2\left(n+1\right) is 2n\left(n+1\right). Multiply -\frac{1}{2n} times \frac{n+1}{n+1}. Multiply \frac{1}{2\left(n+1\right)} times \frac{n}{n}.
n\times \frac{-\left(n+1\right)-n}{2n\left(n+1\right)}
Since -\frac{n+1}{2n\left(n+1\right)} and \frac{n}{2n\left(n+1\right)} have the same denominator, subtract them by subtracting their numerators.
n\times \frac{-n-1-n}{2n\left(n+1\right)}
Do the multiplications in -\left(n+1\right)-n.
n\times \frac{-2n-1}{2n\left(n+1\right)}
Combine like terms in -n-1-n.
\frac{n\left(-2n-1\right)}{2n\left(n+1\right)}
Express n\times \frac{-2n-1}{2n\left(n+1\right)} as a single fraction.
\frac{-2n-1}{2\left(n+1\right)}
Cancel out n in both numerator and denominator.
\frac{-2n-1}{2n+2}
Use the distributive property to multiply 2 by n+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}