Solve for n (complex solution)
\left\{\begin{matrix}n=\frac{e\sin(\theta )}{\lambda }\text{, }&\lambda \neq 0\\n\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}\text{ and }\lambda =0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\frac{e\sin(\theta )}{\lambda }\text{, }&\lambda \neq 0\\n\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }\theta =\pi n_{1}\text{ and }\lambda =0\end{matrix}\right.
Solve for θ (complex solution)
\theta =i+\left(-i\right)\ln(in\lambda +\left(-i\right)\left(n^{2}\lambda ^{2}+\left(-1\right)e^{2}\right)^{\frac{1}{2}})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =i+\left(-i\right)\ln(in\lambda +i\left(n^{2}\lambda ^{2}+\left(-1\right)e^{2}\right)^{\frac{1}{2}})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}
Solve for θ
\theta =arcSin(n\lambda e^{-1})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}
\theta =\pi +2\pi n_{2}+\left(-1\right)arcSin(n\lambda e^{-1})\text{, }n_{2}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\lambda n=e\sin(\theta )
The equation is in standard form.
\frac{\lambda n}{\lambda }=\frac{e\sin(\theta )}{\lambda }
Divide both sides by \lambda .
n=\frac{e\sin(\theta )}{\lambda }
Dividing by \lambda undoes the multiplication by \lambda .
\lambda n=e\sin(\theta )
The equation is in standard form.
\frac{\lambda n}{\lambda }=\frac{e\sin(\theta )}{\lambda }
Divide both sides by \lambda .
n=\frac{e\sin(\theta )}{\lambda }
Dividing by \lambda undoes the multiplication by \lambda .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}