Solve for n
n=-\frac{12}{7\left(4-x\right)}
x\neq 4
Solve for x
x=4+\frac{12}{7n}
n\neq 0
Graph
Share
Copied to clipboard
\frac{7}{6}n\left(-x\right)+4n\times \frac{7}{6}=-2
Use the distributive property to multiply n\times \frac{7}{6} by -x+4.
\frac{7}{6}n\left(-x\right)+\frac{14}{3}n=-2
Multiply 4 and \frac{7}{6} to get \frac{14}{3}.
-\frac{7}{6}nx+\frac{14}{3}n=-2
Multiply \frac{7}{6} and -1 to get -\frac{7}{6}.
\left(-\frac{7}{6}x+\frac{14}{3}\right)n=-2
Combine all terms containing n.
\left(-\frac{7x}{6}+\frac{14}{3}\right)n=-2
The equation is in standard form.
\frac{\left(-\frac{7x}{6}+\frac{14}{3}\right)n}{-\frac{7x}{6}+\frac{14}{3}}=-\frac{2}{-\frac{7x}{6}+\frac{14}{3}}
Divide both sides by -\frac{7}{6}x+\frac{14}{3}.
n=-\frac{2}{-\frac{7x}{6}+\frac{14}{3}}
Dividing by -\frac{7}{6}x+\frac{14}{3} undoes the multiplication by -\frac{7}{6}x+\frac{14}{3}.
n=-\frac{12}{7\left(4-x\right)}
Divide -2 by -\frac{7}{6}x+\frac{14}{3}.
\frac{7}{6}n\left(-x\right)+4n\times \frac{7}{6}=-2
Use the distributive property to multiply n\times \frac{7}{6} by -x+4.
\frac{7}{6}n\left(-x\right)+\frac{14}{3}n=-2
Multiply 4 and \frac{7}{6} to get \frac{14}{3}.
\frac{7}{6}n\left(-x\right)=-2-\frac{14}{3}n
Subtract \frac{14}{3}n from both sides.
-\frac{7}{6}nx=-2-\frac{14}{3}n
Multiply \frac{7}{6} and -1 to get -\frac{7}{6}.
\left(-\frac{7n}{6}\right)x=-\frac{14n}{3}-2
The equation is in standard form.
\frac{\left(-\frac{7n}{6}\right)x}{-\frac{7n}{6}}=\frac{-\frac{14n}{3}-2}{-\frac{7n}{6}}
Divide both sides by -\frac{7}{6}n.
x=\frac{-\frac{14n}{3}-2}{-\frac{7n}{6}}
Dividing by -\frac{7}{6}n undoes the multiplication by -\frac{7}{6}n.
x=4+\frac{12}{7n}
Divide -2-\frac{14n}{3} by -\frac{7}{6}n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}