Solve for n
n=-\frac{t\left(8-t\right)}{48\left(t+40\right)}
t\neq 0\text{ and }t\neq -40
Solve for t
\left\{\begin{matrix}t=4\sqrt{36n^{2}+132n+1}+24n+4\text{, }&n\geq \frac{\sqrt{30}}{3}-\frac{11}{6}\text{ or }n\leq -\frac{\sqrt{30}}{3}-\frac{11}{6}\\t=-4\sqrt{36n^{2}+132n+1}+24n+4\text{, }&\left(n\neq 0\text{ and }n\geq \frac{\sqrt{30}}{3}-\frac{11}{6}\right)\text{ or }n\leq -\frac{\sqrt{30}}{3}-\frac{11}{6}\end{matrix}\right.
Share
Copied to clipboard
n\left(48t+1920\right)\times 1+48t=t\left(t+40\right)
Multiply both sides of the equation by 48t\left(t+40\right), the least common multiple of t,t+40,48.
\left(48nt+1920n\right)\times 1+48t=t\left(t+40\right)
Use the distributive property to multiply n by 48t+1920.
48nt+1920n+48t=t\left(t+40\right)
Use the distributive property to multiply 48nt+1920n by 1.
48nt+1920n+48t=t^{2}+40t
Use the distributive property to multiply t by t+40.
48nt+1920n=t^{2}+40t-48t
Subtract 48t from both sides.
48nt+1920n=t^{2}-8t
Combine 40t and -48t to get -8t.
\left(48t+1920\right)n=t^{2}-8t
Combine all terms containing n.
\frac{\left(48t+1920\right)n}{48t+1920}=\frac{t\left(t-8\right)}{48t+1920}
Divide both sides by 48t+1920.
n=\frac{t\left(t-8\right)}{48t+1920}
Dividing by 48t+1920 undoes the multiplication by 48t+1920.
n=\frac{t\left(t-8\right)}{48\left(t+40\right)}
Divide t\left(-8+t\right) by 48t+1920.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}