Solve for n
n=-\frac{2\left(6x-37\right)}{7x-2}
x\neq \frac{2}{7}
Solve for x
x=\frac{2\left(n+37\right)}{7n+12}
n\neq -\frac{12}{7}
Graph
Share
Copied to clipboard
\frac{7}{2}nx-2n\times \frac{1}{2}+6x=37
Use the distributive property to multiply n\times \frac{1}{2} by 7x-2.
\frac{7}{2}nx-n+6x=37
Multiply -2 and \frac{1}{2} to get -1.
\frac{7}{2}nx-n=37-6x
Subtract 6x from both sides.
\left(\frac{7}{2}x-1\right)n=37-6x
Combine all terms containing n.
\left(\frac{7x}{2}-1\right)n=37-6x
The equation is in standard form.
\frac{\left(\frac{7x}{2}-1\right)n}{\frac{7x}{2}-1}=\frac{37-6x}{\frac{7x}{2}-1}
Divide both sides by \frac{7}{2}x-1.
n=\frac{37-6x}{\frac{7x}{2}-1}
Dividing by \frac{7}{2}x-1 undoes the multiplication by \frac{7}{2}x-1.
n=\frac{2\left(37-6x\right)}{7x-2}
Divide 37-6x by \frac{7}{2}x-1.
\frac{7}{2}xn-2n\times \frac{1}{2}+6x=37
Use the distributive property to multiply n\times \frac{1}{2} by 7x-2.
\frac{7}{2}xn-n+6x=37
Multiply -2 and \frac{1}{2} to get -1.
\frac{7}{2}xn+6x=37+n
Add n to both sides.
\left(\frac{7}{2}n+6\right)x=37+n
Combine all terms containing x.
\left(\frac{7n}{2}+6\right)x=n+37
The equation is in standard form.
\frac{\left(\frac{7n}{2}+6\right)x}{\frac{7n}{2}+6}=\frac{n+37}{\frac{7n}{2}+6}
Divide both sides by \frac{7}{2}n+6.
x=\frac{n+37}{\frac{7n}{2}+6}
Dividing by \frac{7}{2}n+6 undoes the multiplication by \frac{7}{2}n+6.
x=\frac{2\left(n+37\right)}{7n+12}
Divide n+37 by \frac{7}{2}n+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}