Evaluate
\frac{3n}{10}+\frac{77}{30}
Factor
\frac{9n+77}{30}
Share
Copied to clipboard
n\times \frac{1\times 3}{2\times 5}-\frac{1}{3}\times \frac{2}{5}+\frac{3}{2}\times \frac{9}{5}
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
n\times \frac{3}{10}-\frac{1}{3}\times \frac{2}{5}+\frac{3}{2}\times \frac{9}{5}
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
n\times \frac{3}{10}-\frac{1\times 2}{3\times 5}+\frac{3}{2}\times \frac{9}{5}
Multiply \frac{1}{3} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
n\times \frac{3}{10}-\frac{2}{15}+\frac{3}{2}\times \frac{9}{5}
Do the multiplications in the fraction \frac{1\times 2}{3\times 5}.
n\times \frac{3}{10}-\frac{2}{15}+\frac{3\times 9}{2\times 5}
Multiply \frac{3}{2} times \frac{9}{5} by multiplying numerator times numerator and denominator times denominator.
n\times \frac{3}{10}-\frac{2}{15}+\frac{27}{10}
Do the multiplications in the fraction \frac{3\times 9}{2\times 5}.
n\times \frac{3}{10}-\frac{4}{30}+\frac{81}{30}
Least common multiple of 15 and 10 is 30. Convert -\frac{2}{15} and \frac{27}{10} to fractions with denominator 30.
n\times \frac{3}{10}+\frac{-4+81}{30}
Since -\frac{4}{30} and \frac{81}{30} have the same denominator, add them by adding their numerators.
n\times \frac{3}{10}+\frac{77}{30}
Add -4 and 81 to get 77.
\frac{9n+77}{30}
Factor out \frac{1}{30}.
9n+77
Consider 9n-4+81. Multiply and combine like terms.
\frac{9n+77}{30}
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}