Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-8-113n^{2}=-105
Subtract 113n^{2} from both sides.
-112n^{2}-8=-105
Combine n^{2} and -113n^{2} to get -112n^{2}.
-112n^{2}=-105+8
Add 8 to both sides.
-112n^{2}=-97
Add -105 and 8 to get -97.
n^{2}=\frac{-97}{-112}
Divide both sides by -112.
n^{2}=\frac{97}{112}
Fraction \frac{-97}{-112} can be simplified to \frac{97}{112} by removing the negative sign from both the numerator and the denominator.
n=\frac{\sqrt{679}}{28} n=-\frac{\sqrt{679}}{28}
Take the square root of both sides of the equation.
n^{2}-8-113n^{2}=-105
Subtract 113n^{2} from both sides.
-112n^{2}-8=-105
Combine n^{2} and -113n^{2} to get -112n^{2}.
-112n^{2}-8+105=0
Add 105 to both sides.
-112n^{2}+97=0
Add -8 and 105 to get 97.
n=\frac{0±\sqrt{0^{2}-4\left(-112\right)\times 97}}{2\left(-112\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -112 for a, 0 for b, and 97 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\left(-112\right)\times 97}}{2\left(-112\right)}
Square 0.
n=\frac{0±\sqrt{448\times 97}}{2\left(-112\right)}
Multiply -4 times -112.
n=\frac{0±\sqrt{43456}}{2\left(-112\right)}
Multiply 448 times 97.
n=\frac{0±8\sqrt{679}}{2\left(-112\right)}
Take the square root of 43456.
n=\frac{0±8\sqrt{679}}{-224}
Multiply 2 times -112.
n=-\frac{\sqrt{679}}{28}
Now solve the equation n=\frac{0±8\sqrt{679}}{-224} when ± is plus.
n=\frac{\sqrt{679}}{28}
Now solve the equation n=\frac{0±8\sqrt{679}}{-224} when ± is minus.
n=-\frac{\sqrt{679}}{28} n=\frac{\sqrt{679}}{28}
The equation is now solved.