Solve for n
n = \frac{3 \sqrt{893} + 4019}{2} \approx 2054.324658392
n = \frac{4019 - 3 \sqrt{893}}{2} \approx 1964.675341608
Share
Copied to clipboard
n^{2}-4019n+4036081=0
Calculate 2009 to the power of 2 and get 4036081.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 4036081}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -4019 for b, and 4036081 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-4019\right)±\sqrt{16152361-4\times 4036081}}{2}
Square -4019.
n=\frac{-\left(-4019\right)±\sqrt{16152361-16144324}}{2}
Multiply -4 times 4036081.
n=\frac{-\left(-4019\right)±\sqrt{8037}}{2}
Add 16152361 to -16144324.
n=\frac{-\left(-4019\right)±3\sqrt{893}}{2}
Take the square root of 8037.
n=\frac{4019±3\sqrt{893}}{2}
The opposite of -4019 is 4019.
n=\frac{3\sqrt{893}+4019}{2}
Now solve the equation n=\frac{4019±3\sqrt{893}}{2} when ± is plus. Add 4019 to 3\sqrt{893}.
n=\frac{4019-3\sqrt{893}}{2}
Now solve the equation n=\frac{4019±3\sqrt{893}}{2} when ± is minus. Subtract 3\sqrt{893} from 4019.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
The equation is now solved.
n^{2}-4019n+4036081=0
Calculate 2009 to the power of 2 and get 4036081.
n^{2}-4019n=-4036081
Subtract 4036081 from both sides. Anything subtracted from zero gives its negation.
n^{2}-4019n+\left(-\frac{4019}{2}\right)^{2}=-4036081+\left(-\frac{4019}{2}\right)^{2}
Divide -4019, the coefficient of the x term, by 2 to get -\frac{4019}{2}. Then add the square of -\frac{4019}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-4019n+\frac{16152361}{4}=-4036081+\frac{16152361}{4}
Square -\frac{4019}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-4019n+\frac{16152361}{4}=\frac{8037}{4}
Add -4036081 to \frac{16152361}{4}.
\left(n-\frac{4019}{2}\right)^{2}=\frac{8037}{4}
Factor n^{2}-4019n+\frac{16152361}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{4019}{2}\right)^{2}}=\sqrt{\frac{8037}{4}}
Take the square root of both sides of the equation.
n-\frac{4019}{2}=\frac{3\sqrt{893}}{2} n-\frac{4019}{2}=-\frac{3\sqrt{893}}{2}
Simplify.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Add \frac{4019}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}