Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}-2n=1225
Calculate 35 to the power of 2 and get 1225.
n^{2}-2n-1225=0
Subtract 1225 from both sides.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1225\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2 for b, and -1225 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-1225\right)}}{2}
Square -2.
n=\frac{-\left(-2\right)±\sqrt{4+4900}}{2}
Multiply -4 times -1225.
n=\frac{-\left(-2\right)±\sqrt{4904}}{2}
Add 4 to 4900.
n=\frac{-\left(-2\right)±2\sqrt{1226}}{2}
Take the square root of 4904.
n=\frac{2±2\sqrt{1226}}{2}
The opposite of -2 is 2.
n=\frac{2\sqrt{1226}+2}{2}
Now solve the equation n=\frac{2±2\sqrt{1226}}{2} when ± is plus. Add 2 to 2\sqrt{1226}.
n=\sqrt{1226}+1
Divide 2+2\sqrt{1226} by 2.
n=\frac{2-2\sqrt{1226}}{2}
Now solve the equation n=\frac{2±2\sqrt{1226}}{2} when ± is minus. Subtract 2\sqrt{1226} from 2.
n=1-\sqrt{1226}
Divide 2-2\sqrt{1226} by 2.
n=\sqrt{1226}+1 n=1-\sqrt{1226}
The equation is now solved.
n^{2}-2n=1225
Calculate 35 to the power of 2 and get 1225.
n^{2}-2n+1=1225+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-2n+1=1226
Add 1225 to 1.
\left(n-1\right)^{2}=1226
Factor n^{2}-2n+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-1\right)^{2}}=\sqrt{1226}
Take the square root of both sides of the equation.
n-1=\sqrt{1226} n-1=-\sqrt{1226}
Simplify.
n=\sqrt{1226}+1 n=1-\sqrt{1226}
Add 1 to both sides of the equation.