Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(n^{2}-12n+9)
Calculate 3 to the power of 2 and get 9.
n^{2}-12n+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 9}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-12\right)±\sqrt{144-4\times 9}}{2}
Square -12.
n=\frac{-\left(-12\right)±\sqrt{144-36}}{2}
Multiply -4 times 9.
n=\frac{-\left(-12\right)±\sqrt{108}}{2}
Add 144 to -36.
n=\frac{-\left(-12\right)±6\sqrt{3}}{2}
Take the square root of 108.
n=\frac{12±6\sqrt{3}}{2}
The opposite of -12 is 12.
n=\frac{6\sqrt{3}+12}{2}
Now solve the equation n=\frac{12±6\sqrt{3}}{2} when ± is plus. Add 12 to 6\sqrt{3}.
n=3\sqrt{3}+6
Divide 12+6\sqrt{3} by 2.
n=\frac{12-6\sqrt{3}}{2}
Now solve the equation n=\frac{12±6\sqrt{3}}{2} when ± is minus. Subtract 6\sqrt{3} from 12.
n=6-3\sqrt{3}
Divide 12-6\sqrt{3} by 2.
n^{2}-12n+9=\left(n-\left(3\sqrt{3}+6\right)\right)\left(n-\left(6-3\sqrt{3}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6+3\sqrt{3} for x_{1} and 6-3\sqrt{3} for x_{2}.
n^{2}-12n+9
Calculate 3 to the power of 2 and get 9.