Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

n^{2}+4530n-12060\times 69=0
Multiply 30 and 151 to get 4530.
n^{2}+4530n-832140=0
Multiply 12060 and 69 to get 832140.
n=\frac{-4530±\sqrt{4530^{2}-4\left(-832140\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4530 for b, and -832140 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4530±\sqrt{20520900-4\left(-832140\right)}}{2}
Square 4530.
n=\frac{-4530±\sqrt{20520900+3328560}}{2}
Multiply -4 times -832140.
n=\frac{-4530±\sqrt{23849460}}{2}
Add 20520900 to 3328560.
n=\frac{-4530±6\sqrt{662485}}{2}
Take the square root of 23849460.
n=\frac{6\sqrt{662485}-4530}{2}
Now solve the equation n=\frac{-4530±6\sqrt{662485}}{2} when ± is plus. Add -4530 to 6\sqrt{662485}.
n=3\sqrt{662485}-2265
Divide -4530+6\sqrt{662485} by 2.
n=\frac{-6\sqrt{662485}-4530}{2}
Now solve the equation n=\frac{-4530±6\sqrt{662485}}{2} when ± is minus. Subtract 6\sqrt{662485} from -4530.
n=-3\sqrt{662485}-2265
Divide -4530-6\sqrt{662485} by 2.
n=3\sqrt{662485}-2265 n=-3\sqrt{662485}-2265
The equation is now solved.
n^{2}+4530n-12060\times 69=0
Multiply 30 and 151 to get 4530.
n^{2}+4530n-832140=0
Multiply 12060 and 69 to get 832140.
n^{2}+4530n=832140
Add 832140 to both sides. Anything plus zero gives itself.
n^{2}+4530n+2265^{2}=832140+2265^{2}
Divide 4530, the coefficient of the x term, by 2 to get 2265. Then add the square of 2265 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+4530n+5130225=832140+5130225
Square 2265.
n^{2}+4530n+5130225=5962365
Add 832140 to 5130225.
\left(n+2265\right)^{2}=5962365
Factor n^{2}+4530n+5130225. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+2265\right)^{2}}=\sqrt{5962365}
Take the square root of both sides of the equation.
n+2265=3\sqrt{662485} n+2265=-3\sqrt{662485}
Simplify.
n=3\sqrt{662485}-2265 n=-3\sqrt{662485}-2265
Subtract 2265 from both sides of the equation.