Solve for n
n=5
Share
Copied to clipboard
n^{2}=\left(\sqrt{-25+10n}\right)^{2}
Square both sides of the equation.
n^{2}=-25+10n
Calculate \sqrt{-25+10n} to the power of 2 and get -25+10n.
n^{2}-\left(-25\right)=10n
Subtract -25 from both sides.
n^{2}+25=10n
The opposite of -25 is 25.
n^{2}+25-10n=0
Subtract 10n from both sides.
n^{2}-10n+25=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-10 ab=25
To solve the equation, factor n^{2}-10n+25 using formula n^{2}+\left(a+b\right)n+ab=\left(n+a\right)\left(n+b\right). To find a and b, set up a system to be solved.
-1,-25 -5,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 25.
-1-25=-26 -5-5=-10
Calculate the sum for each pair.
a=-5 b=-5
The solution is the pair that gives sum -10.
\left(n-5\right)\left(n-5\right)
Rewrite factored expression \left(n+a\right)\left(n+b\right) using the obtained values.
\left(n-5\right)^{2}
Rewrite as a binomial square.
n=5
To find equation solution, solve n-5=0.
5=\sqrt{-25+10\times 5}
Substitute 5 for n in the equation n=\sqrt{-25+10n}.
5=5
Simplify. The value n=5 satisfies the equation.
n=5
Equation n=\sqrt{10n-25} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}