Solve for n
n=\frac{16x\left(7x-75\right)}{105}
x\neq 0
Solve for x (complex solution)
\left\{\begin{matrix}\\x=\frac{\sqrt{735n+22500}}{28}+\frac{75}{14}\text{, }&\text{unconditionally}\\x=-\frac{\sqrt{735n+22500}}{28}+\frac{75}{14}\text{, }&n\neq 0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{735n+22500}}{28}+\frac{75}{14}\text{, }&n\geq -\frac{1500}{49}\\x=-\frac{\sqrt{735n+22500}}{28}+\frac{75}{14}\text{, }&n\neq 0\text{ and }n\geq -\frac{1500}{49}\end{matrix}\right.
Graph
Quiz
Algebra
5 problems similar to:
n : \frac { 8 x } { 5 } + 9 = \frac { 13 } { 7 } + \frac { 2 x } { 3 }
Share
Copied to clipboard
\frac{105}{8}x^{-1}n+189=39+7\times 2x
Multiply both sides of the equation by 21, the least common multiple of 7,3.
\frac{105}{8}x^{-1}n+189=39+14x
Multiply 7 and 2 to get 14.
\frac{105}{8}x^{-1}n=39+14x-189
Subtract 189 from both sides.
\frac{105}{8}x^{-1}n=-150+14x
Subtract 189 from 39 to get -150.
\frac{105}{8}\times \frac{1}{x}n=14x-150
Reorder the terms.
\frac{105}{8}\times 8\times 1n=14x\times 8x+8x\left(-150\right)
Multiply both sides of the equation by 8x, the least common multiple of 8,x.
105\times 1n=14x\times 8x+8x\left(-150\right)
Multiply \frac{105}{8} and 8 to get 105.
105n=14x\times 8x+8x\left(-150\right)
Multiply 105 and 1 to get 105.
105n=14x^{2}\times 8+8x\left(-150\right)
Multiply x and x to get x^{2}.
105n=112x^{2}+8x\left(-150\right)
Multiply 14 and 8 to get 112.
105n=112x^{2}-1200x
Multiply 8 and -150 to get -1200.
\frac{105n}{105}=\frac{16x\left(7x-75\right)}{105}
Divide both sides by 105.
n=\frac{16x\left(7x-75\right)}{105}
Dividing by 105 undoes the multiplication by 105.
n=\frac{16x^{2}}{15}-\frac{80x}{7}
Divide 16x\left(-75+7x\right) by 105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}