Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

3n^{2}+n-108=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-1±\sqrt{1^{2}-4\times 3\left(-108\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-1±\sqrt{1-4\times 3\left(-108\right)}}{2\times 3}
Square 1.
n=\frac{-1±\sqrt{1-12\left(-108\right)}}{2\times 3}
Multiply -4 times 3.
n=\frac{-1±\sqrt{1+1296}}{2\times 3}
Multiply -12 times -108.
n=\frac{-1±\sqrt{1297}}{2\times 3}
Add 1 to 1296.
n=\frac{-1±\sqrt{1297}}{6}
Multiply 2 times 3.
n=\frac{\sqrt{1297}-1}{6}
Now solve the equation n=\frac{-1±\sqrt{1297}}{6} when ± is plus. Add -1 to \sqrt{1297}.
n=\frac{-\sqrt{1297}-1}{6}
Now solve the equation n=\frac{-1±\sqrt{1297}}{6} when ± is minus. Subtract \sqrt{1297} from -1.
n=\frac{\sqrt{1297}-1}{6} n=\frac{-\sqrt{1297}-1}{6}
The equation is now solved.
3n^{2}+n-108=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3n^{2}+n-108-\left(-108\right)=-\left(-108\right)
Add 108 to both sides of the equation.
3n^{2}+n=-\left(-108\right)
Subtracting -108 from itself leaves 0.
3n^{2}+n=108
Subtract -108 from 0.
\frac{3n^{2}+n}{3}=\frac{108}{3}
Divide both sides by 3.
n^{2}+\frac{1}{3}n=\frac{108}{3}
Dividing by 3 undoes the multiplication by 3.
n^{2}+\frac{1}{3}n=36
Divide 108 by 3.
n^{2}+\frac{1}{3}n+\left(\frac{1}{6}\right)^{2}=36+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{1}{3}n+\frac{1}{36}=36+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{1}{3}n+\frac{1}{36}=\frac{1297}{36}
Add 36 to \frac{1}{36}.
\left(n+\frac{1}{6}\right)^{2}=\frac{1297}{36}
Factor n^{2}+\frac{1}{3}n+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{1}{6}\right)^{2}}=\sqrt{\frac{1297}{36}}
Take the square root of both sides of the equation.
n+\frac{1}{6}=\frac{\sqrt{1297}}{6} n+\frac{1}{6}=-\frac{\sqrt{1297}}{6}
Simplify.
n=\frac{\sqrt{1297}-1}{6} n=\frac{-\sqrt{1297}-1}{6}
Subtract \frac{1}{6} from both sides of the equation.