Solve for n
n=5-2\sqrt{10}\approx -1.32455532
Share
Copied to clipboard
\sqrt{6n+19}=2-n
Subtract n from both sides of the equation.
\left(\sqrt{6n+19}\right)^{2}=\left(2-n\right)^{2}
Square both sides of the equation.
6n+19=\left(2-n\right)^{2}
Calculate \sqrt{6n+19} to the power of 2 and get 6n+19.
6n+19=4-4n+n^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-n\right)^{2}.
6n+19-4=-4n+n^{2}
Subtract 4 from both sides.
6n+15=-4n+n^{2}
Subtract 4 from 19 to get 15.
6n+15+4n=n^{2}
Add 4n to both sides.
10n+15=n^{2}
Combine 6n and 4n to get 10n.
10n+15-n^{2}=0
Subtract n^{2} from both sides.
-n^{2}+10n+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-10±\sqrt{10^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 10 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-10±\sqrt{100-4\left(-1\right)\times 15}}{2\left(-1\right)}
Square 10.
n=\frac{-10±\sqrt{100+4\times 15}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-10±\sqrt{100+60}}{2\left(-1\right)}
Multiply 4 times 15.
n=\frac{-10±\sqrt{160}}{2\left(-1\right)}
Add 100 to 60.
n=\frac{-10±4\sqrt{10}}{2\left(-1\right)}
Take the square root of 160.
n=\frac{-10±4\sqrt{10}}{-2}
Multiply 2 times -1.
n=\frac{4\sqrt{10}-10}{-2}
Now solve the equation n=\frac{-10±4\sqrt{10}}{-2} when ± is plus. Add -10 to 4\sqrt{10}.
n=5-2\sqrt{10}
Divide -10+4\sqrt{10} by -2.
n=\frac{-4\sqrt{10}-10}{-2}
Now solve the equation n=\frac{-10±4\sqrt{10}}{-2} when ± is minus. Subtract 4\sqrt{10} from -10.
n=2\sqrt{10}+5
Divide -10-4\sqrt{10} by -2.
n=5-2\sqrt{10} n=2\sqrt{10}+5
The equation is now solved.
5-2\sqrt{10}+\sqrt{6\left(5-2\sqrt{10}\right)+19}=2
Substitute 5-2\sqrt{10} for n in the equation n+\sqrt{6n+19}=2.
2=2
Simplify. The value n=5-2\sqrt{10} satisfies the equation.
2\sqrt{10}+5+\sqrt{6\left(2\sqrt{10}+5\right)+19}=2
Substitute 2\sqrt{10}+5 for n in the equation n+\sqrt{6n+19}=2.
4\times 10^{\frac{1}{2}}+8=2
Simplify. The value n=2\sqrt{10}+5 does not satisfy the equation.
n=5-2\sqrt{10}
Equation \sqrt{6n+19}=2-n has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}