Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

m^{2}\left(n^{4}-m^{4}\right)
Factor out m^{2}.
\left(n^{2}-m^{2}\right)\left(n^{2}+m^{2}\right)
Consider n^{4}-m^{4}. Rewrite n^{4}-m^{4} as \left(n^{2}\right)^{2}-\left(m^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m^{2}+n^{2}\right)\left(m^{2}+n^{2}\right)
Reorder the terms.
\left(n-m\right)\left(n+m\right)
Consider -m^{2}+n^{2}. Rewrite -m^{2}+n^{2} as n^{2}-m^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-m+n\right)\left(m+n\right)
Reorder the terms.
m^{2}\left(-m+n\right)\left(m+n\right)\left(m^{2}+n^{2}\right)
Rewrite the complete factored expression.