Solve for σ
\sigma =\frac{m}{4}-\frac{14}{m}
m\neq 0
Solve for m
m=2\left(\sqrt{\sigma ^{2}+14}+\sigma \right)
m=2\left(-\sqrt{\sigma ^{2}+14}+\sigma \right)
Share
Copied to clipboard
-4\sigma m-56=-m^{2}
Subtract m^{2} from both sides. Anything subtracted from zero gives its negation.
-4\sigma m=-m^{2}+56
Add 56 to both sides.
\left(-4m\right)\sigma =56-m^{2}
The equation is in standard form.
\frac{\left(-4m\right)\sigma }{-4m}=\frac{56-m^{2}}{-4m}
Divide both sides by -4m.
\sigma =\frac{56-m^{2}}{-4m}
Dividing by -4m undoes the multiplication by -4m.
\sigma =\frac{m}{4}-\frac{14}{m}
Divide -m^{2}+56 by -4m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}