Skip to main content
Solve for m
Tick mark Image

Similar Problems from Web Search

Share

m^{2}-17m+32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 32}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -17 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-17\right)±\sqrt{289-4\times 32}}{2}
Square -17.
m=\frac{-\left(-17\right)±\sqrt{289-128}}{2}
Multiply -4 times 32.
m=\frac{-\left(-17\right)±\sqrt{161}}{2}
Add 289 to -128.
m=\frac{17±\sqrt{161}}{2}
The opposite of -17 is 17.
m=\frac{\sqrt{161}+17}{2}
Now solve the equation m=\frac{17±\sqrt{161}}{2} when ± is plus. Add 17 to \sqrt{161}.
m=\frac{17-\sqrt{161}}{2}
Now solve the equation m=\frac{17±\sqrt{161}}{2} when ± is minus. Subtract \sqrt{161} from 17.
m=\frac{\sqrt{161}+17}{2} m=\frac{17-\sqrt{161}}{2}
The equation is now solved.
m^{2}-17m+32=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
m^{2}-17m+32-32=-32
Subtract 32 from both sides of the equation.
m^{2}-17m=-32
Subtracting 32 from itself leaves 0.
m^{2}-17m+\left(-\frac{17}{2}\right)^{2}=-32+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-17m+\frac{289}{4}=-32+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
m^{2}-17m+\frac{289}{4}=\frac{161}{4}
Add -32 to \frac{289}{4}.
\left(m-\frac{17}{2}\right)^{2}=\frac{161}{4}
Factor m^{2}-17m+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{17}{2}\right)^{2}}=\sqrt{\frac{161}{4}}
Take the square root of both sides of the equation.
m-\frac{17}{2}=\frac{\sqrt{161}}{2} m-\frac{17}{2}=-\frac{\sqrt{161}}{2}
Simplify.
m=\frac{\sqrt{161}+17}{2} m=\frac{17-\sqrt{161}}{2}
Add \frac{17}{2} to both sides of the equation.
x ^ 2 -17x +32 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 17 rs = 32
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{17}{2} - u s = \frac{17}{2} + u
Two numbers r and s sum up to 17 exactly when the average of the two numbers is \frac{1}{2}*17 = \frac{17}{2}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{17}{2} - u) (\frac{17}{2} + u) = 32
To solve for unknown quantity u, substitute these in the product equation rs = 32
\frac{289}{4} - u^2 = 32
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 32-\frac{289}{4} = -\frac{161}{4}
Simplify the expression by subtracting \frac{289}{4} on both sides
u^2 = \frac{161}{4} u = \pm\sqrt{\frac{161}{4}} = \pm \frac{\sqrt{161}}{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{17}{2} - \frac{\sqrt{161}}{2} = 2.156 s = \frac{17}{2} + \frac{\sqrt{161}}{2} = 14.844
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.