Solve for k
k=\frac{m}{3}+l
Solve for l
l=-\frac{m}{3}+k
Share
Copied to clipboard
m=3k-3l
Use the distributive property to multiply 3 by k-l.
3k-3l=m
Swap sides so that all variable terms are on the left hand side.
3k=m+3l
Add 3l to both sides.
\frac{3k}{3}=\frac{m+3l}{3}
Divide both sides by 3.
k=\frac{m+3l}{3}
Dividing by 3 undoes the multiplication by 3.
k=\frac{m}{3}+l
Divide m+3l by 3.
m=3k-3l
Use the distributive property to multiply 3 by k-l.
3k-3l=m
Swap sides so that all variable terms are on the left hand side.
-3l=m-3k
Subtract 3k from both sides.
\frac{-3l}{-3}=\frac{m-3k}{-3}
Divide both sides by -3.
l=\frac{m-3k}{-3}
Dividing by -3 undoes the multiplication by -3.
l=-\frac{m}{3}+k
Divide m-3k by -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}