Solve for m
m=-\frac{n+1}{1-n}
n\neq 1
Solve for n
n=-\frac{m+1}{1-m}
m\neq 1
Share
Copied to clipboard
m+1+n-mn=0
Subtract mn from both sides.
m+n-mn=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
m-mn=-1-n
Subtract n from both sides.
\left(1-n\right)m=-1-n
Combine all terms containing m.
\left(1-n\right)m=-n-1
The equation is in standard form.
\frac{\left(1-n\right)m}{1-n}=\frac{-n-1}{1-n}
Divide both sides by 1-n.
m=\frac{-n-1}{1-n}
Dividing by 1-n undoes the multiplication by 1-n.
m=-\frac{n+1}{1-n}
Divide -1-n by 1-n.
m+1+n-mn=0
Subtract mn from both sides.
1+n-mn=-m
Subtract m from both sides. Anything subtracted from zero gives its negation.
n-mn=-m-1
Subtract 1 from both sides.
\left(1-m\right)n=-m-1
Combine all terms containing n.
\frac{\left(1-m\right)n}{1-m}=\frac{-m-1}{1-m}
Divide both sides by 1-m.
n=\frac{-m-1}{1-m}
Dividing by 1-m undoes the multiplication by 1-m.
n=-\frac{m+1}{1-m}
Divide -m-1 by 1-m.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}