Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{5x+3y}{x+y}\text{, }&y\neq -x\\k\in \mathrm{C}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{y\left(k-3\right)}{k-5}\text{, }&k\neq 5\\x\in \mathrm{C}\text{, }&y=0\text{ and }k=5\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{5x+3y}{x+y}\text{, }&y\neq -x\\k\in \mathrm{R}\text{, }&y=0\text{ and }x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{y\left(k-3\right)}{k-5}\text{, }&k\neq 5\\x\in \mathrm{R}\text{, }&y=0\text{ and }k=5\end{matrix}\right.
Graph
Share
Copied to clipboard
ky-3y-\left(-k\right)x=5x
Subtract \left(-k\right)x from both sides.
ky-3y+kx=5x
Multiply -1 and -1 to get 1.
ky+kx=5x+3y
Add 3y to both sides.
\left(y+x\right)k=5x+3y
Combine all terms containing k.
\left(x+y\right)k=5x+3y
The equation is in standard form.
\frac{\left(x+y\right)k}{x+y}=\frac{5x+3y}{x+y}
Divide both sides by x+y.
k=\frac{5x+3y}{x+y}
Dividing by x+y undoes the multiplication by x+y.
\left(-k\right)x+5x=ky-3y
Swap sides so that all variable terms are on the left hand side.
-kx+5x=ky-3y
Reorder the terms.
\left(-k+5\right)x=ky-3y
Combine all terms containing x.
\left(5-k\right)x=ky-3y
The equation is in standard form.
\frac{\left(5-k\right)x}{5-k}=\frac{y\left(k-3\right)}{5-k}
Divide both sides by -k+5.
x=\frac{y\left(k-3\right)}{5-k}
Dividing by -k+5 undoes the multiplication by -k+5.
ky-3y-\left(-k\right)x=5x
Subtract \left(-k\right)x from both sides.
ky-3y+kx=5x
Multiply -1 and -1 to get 1.
ky+kx=5x+3y
Add 3y to both sides.
\left(y+x\right)k=5x+3y
Combine all terms containing k.
\left(x+y\right)k=5x+3y
The equation is in standard form.
\frac{\left(x+y\right)k}{x+y}=\frac{5x+3y}{x+y}
Divide both sides by x+y.
k=\frac{5x+3y}{x+y}
Dividing by x+y undoes the multiplication by x+y.
\left(-k\right)x+5x=ky-3y
Swap sides so that all variable terms are on the left hand side.
-kx+5x=ky-3y
Reorder the terms.
\left(-k+5\right)x=ky-3y
Combine all terms containing x.
\left(5-k\right)x=ky-3y
The equation is in standard form.
\frac{\left(5-k\right)x}{5-k}=\frac{y\left(k-3\right)}{5-k}
Divide both sides by -k+5.
x=\frac{y\left(k-3\right)}{5-k}
Dividing by -k+5 undoes the multiplication by -k+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}