Solve for k (complex solution)
k=\frac{5\left(2x+1\right)}{x^{2}+6}
x\neq -\sqrt{6}i\text{ and }x\neq \sqrt{6}i
Solve for k
k=\frac{5\left(2x+1\right)}{x^{2}+6}
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{25+5k-6k^{2}}+5}{k}\text{; }x=\frac{-\sqrt{25+5k-6k^{2}}+5}{k}\text{, }&k\neq 0\\x=-\frac{1}{2}\text{, }&k=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=\frac{\sqrt{\left(5-2k\right)\left(3k+5\right)}+5}{k}\text{; }x=\frac{-\sqrt{\left(5-2k\right)\left(3k+5\right)}+5}{k}\text{, }&k\neq 0\text{ and }k\geq -\frac{5}{3}\text{ and }k\leq \frac{5}{2}\\x=-\frac{1}{2}\text{, }&k=0\end{matrix}\right.
Graph
Share
Copied to clipboard
kx^{2}+6k=5+10x
Add 10x to both sides.
\left(x^{2}+6\right)k=5+10x
Combine all terms containing k.
\left(x^{2}+6\right)k=10x+5
The equation is in standard form.
\frac{\left(x^{2}+6\right)k}{x^{2}+6}=\frac{10x+5}{x^{2}+6}
Divide both sides by x^{2}+6.
k=\frac{10x+5}{x^{2}+6}
Dividing by x^{2}+6 undoes the multiplication by x^{2}+6.
k=\frac{5\left(2x+1\right)}{x^{2}+6}
Divide 5+10x by x^{2}+6.
kx^{2}+6k=5+10x
Add 10x to both sides.
\left(x^{2}+6\right)k=5+10x
Combine all terms containing k.
\left(x^{2}+6\right)k=10x+5
The equation is in standard form.
\frac{\left(x^{2}+6\right)k}{x^{2}+6}=\frac{10x+5}{x^{2}+6}
Divide both sides by x^{2}+6.
k=\frac{10x+5}{x^{2}+6}
Dividing by x^{2}+6 undoes the multiplication by x^{2}+6.
k=\frac{5\left(2x+1\right)}{x^{2}+6}
Divide 5+10x by x^{2}+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}