Solve for f_1 (complex solution)
\left\{\begin{matrix}f_{1}=\frac{y\left(2x+1\right)}{k_{r}}\text{, }&k_{r}\neq 0\text{ and }y\neq 0\\f_{1}\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }k_{r}=0\text{ and }y\neq 0\end{matrix}\right.
Solve for k_r (complex solution)
\left\{\begin{matrix}k_{r}=\frac{y\left(2x+1\right)}{f_{1}}\text{, }&f_{1}\neq 0\text{ and }y\neq 0\\k_{r}\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }f_{1}=0\text{ and }y\neq 0\end{matrix}\right.
Solve for f_1
\left\{\begin{matrix}f_{1}=\frac{y\left(2x+1\right)}{k_{r}}\text{, }&k_{r}\neq 0\text{ and }y\neq 0\\f_{1}\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }k_{r}=0\text{ and }y\neq 0\end{matrix}\right.
Solve for k_r
\left\{\begin{matrix}k_{r}=\frac{y\left(2x+1\right)}{f_{1}}\text{, }&f_{1}\neq 0\text{ and }y\neq 0\\k_{r}\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }f_{1}=0\text{ and }y\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
k_{r}f_{1}=2xy+y
Multiply both sides of the equation by y.
\frac{k_{r}f_{1}}{k_{r}}=\frac{2xy+y}{k_{r}}
Divide both sides by k_{r}.
f_{1}=\frac{2xy+y}{k_{r}}
Dividing by k_{r} undoes the multiplication by k_{r}.
f_{1}=\frac{y\left(2x+1\right)}{k_{r}}
Divide 2yx+y by k_{r}.
k_{r}f_{1}=2xy+y
Multiply both sides of the equation by y.
f_{1}k_{r}=2xy+y
The equation is in standard form.
\frac{f_{1}k_{r}}{f_{1}}=\frac{2xy+y}{f_{1}}
Divide both sides by f_{1}.
k_{r}=\frac{2xy+y}{f_{1}}
Dividing by f_{1} undoes the multiplication by f_{1}.
k_{r}=\frac{y\left(2x+1\right)}{f_{1}}
Divide 2yx+y by f_{1}.
k_{r}f_{1}=2xy+y
Multiply both sides of the equation by y.
\frac{k_{r}f_{1}}{k_{r}}=\frac{2xy+y}{k_{r}}
Divide both sides by k_{r}.
f_{1}=\frac{2xy+y}{k_{r}}
Dividing by k_{r} undoes the multiplication by k_{r}.
f_{1}=\frac{y\left(2x+1\right)}{k_{r}}
Divide 2yx+y by k_{r}.
k_{r}f_{1}=2xy+y
Multiply both sides of the equation by y.
f_{1}k_{r}=2xy+y
The equation is in standard form.
\frac{f_{1}k_{r}}{f_{1}}=\frac{2xy+y}{f_{1}}
Divide both sides by f_{1}.
k_{r}=\frac{2xy+y}{f_{1}}
Dividing by f_{1} undoes the multiplication by f_{1}.
k_{r}=\frac{y\left(2x+1\right)}{f_{1}}
Divide 2yx+y by f_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}