Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(k^{2}+k\right)\left(k+2\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply k by k+1.
\left(k^{3}+2k^{2}+k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{2}+k by each term of k+2.
\left(k^{3}+3k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 2k^{2} and k^{2} to get 3k^{2}.
k^{4}+3k^{3}+3k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{3}+3k^{2}+2k by each term of k+3.
k^{4}+6k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 3k^{3} and 3k^{3} to get 6k^{3}.
k^{4}+6k^{3}+11k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 9k^{2} and 2k^{2} to get 11k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k+4\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply 4 by k+1.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+8k+4k+8\right)\left(k+3\right)
Apply the distributive property by multiplying each term of 4k+4 by each term of k+2.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+12k+8\right)\left(k+3\right)
Combine 8k and 4k to get 12k.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+12k^{2}+12k^{2}+36k+8k+24
Apply the distributive property by multiplying each term of 4k^{2}+12k+8 by each term of k+3.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+36k+8k+24
Combine 12k^{2} and 12k^{2} to get 24k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+44k+24
Combine 36k and 8k to get 44k.
k^{4}+10k^{3}+11k^{2}+6k+24k^{2}+44k+24
Combine 6k^{3} and 4k^{3} to get 10k^{3}.
k^{4}+10k^{3}+35k^{2}+6k+44k+24
Combine 11k^{2} and 24k^{2} to get 35k^{2}.
k^{4}+10k^{3}+35k^{2}+50k+24
Combine 6k and 44k to get 50k.
\left(k^{2}+k\right)\left(k+2\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply k by k+1.
\left(k^{3}+2k^{2}+k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{2}+k by each term of k+2.
\left(k^{3}+3k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 2k^{2} and k^{2} to get 3k^{2}.
k^{4}+3k^{3}+3k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{3}+3k^{2}+2k by each term of k+3.
k^{4}+6k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 3k^{3} and 3k^{3} to get 6k^{3}.
k^{4}+6k^{3}+11k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 9k^{2} and 2k^{2} to get 11k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k+4\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply 4 by k+1.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+8k+4k+8\right)\left(k+3\right)
Apply the distributive property by multiplying each term of 4k+4 by each term of k+2.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+12k+8\right)\left(k+3\right)
Combine 8k and 4k to get 12k.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+12k^{2}+12k^{2}+36k+8k+24
Apply the distributive property by multiplying each term of 4k^{2}+12k+8 by each term of k+3.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+36k+8k+24
Combine 12k^{2} and 12k^{2} to get 24k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+44k+24
Combine 36k and 8k to get 44k.
k^{4}+10k^{3}+11k^{2}+6k+24k^{2}+44k+24
Combine 6k^{3} and 4k^{3} to get 10k^{3}.
k^{4}+10k^{3}+35k^{2}+6k+44k+24
Combine 11k^{2} and 24k^{2} to get 35k^{2}.
k^{4}+10k^{3}+35k^{2}+50k+24
Combine 6k and 44k to get 50k.