Evaluate
\left(k+1\right)\left(k+2\right)\left(k+3\right)\left(k+4\right)
Expand
k^{4}+10k^{3}+35k^{2}+50k+24
Quiz
Polynomial
5 problems similar to:
k ( k + 1 ) ( k + 2 ) ( k + 3 ) + 4 ( k + 1 ) ( k + 2 ) ( k + 3 )
Share
Copied to clipboard
\left(k^{2}+k\right)\left(k+2\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply k by k+1.
\left(k^{3}+2k^{2}+k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{2}+k by each term of k+2.
\left(k^{3}+3k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 2k^{2} and k^{2} to get 3k^{2}.
k^{4}+3k^{3}+3k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{3}+3k^{2}+2k by each term of k+3.
k^{4}+6k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 3k^{3} and 3k^{3} to get 6k^{3}.
k^{4}+6k^{3}+11k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 9k^{2} and 2k^{2} to get 11k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k+4\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply 4 by k+1.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+8k+4k+8\right)\left(k+3\right)
Apply the distributive property by multiplying each term of 4k+4 by each term of k+2.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+12k+8\right)\left(k+3\right)
Combine 8k and 4k to get 12k.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+12k^{2}+12k^{2}+36k+8k+24
Apply the distributive property by multiplying each term of 4k^{2}+12k+8 by each term of k+3.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+36k+8k+24
Combine 12k^{2} and 12k^{2} to get 24k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+44k+24
Combine 36k and 8k to get 44k.
k^{4}+10k^{3}+11k^{2}+6k+24k^{2}+44k+24
Combine 6k^{3} and 4k^{3} to get 10k^{3}.
k^{4}+10k^{3}+35k^{2}+6k+44k+24
Combine 11k^{2} and 24k^{2} to get 35k^{2}.
k^{4}+10k^{3}+35k^{2}+50k+24
Combine 6k and 44k to get 50k.
\left(k^{2}+k\right)\left(k+2\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply k by k+1.
\left(k^{3}+2k^{2}+k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{2}+k by each term of k+2.
\left(k^{3}+3k^{2}+2k\right)\left(k+3\right)+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 2k^{2} and k^{2} to get 3k^{2}.
k^{4}+3k^{3}+3k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Apply the distributive property by multiplying each term of k^{3}+3k^{2}+2k by each term of k+3.
k^{4}+6k^{3}+9k^{2}+2k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 3k^{3} and 3k^{3} to get 6k^{3}.
k^{4}+6k^{3}+11k^{2}+6k+4\left(k+1\right)\left(k+2\right)\left(k+3\right)
Combine 9k^{2} and 2k^{2} to get 11k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k+4\right)\left(k+2\right)\left(k+3\right)
Use the distributive property to multiply 4 by k+1.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+8k+4k+8\right)\left(k+3\right)
Apply the distributive property by multiplying each term of 4k+4 by each term of k+2.
k^{4}+6k^{3}+11k^{2}+6k+\left(4k^{2}+12k+8\right)\left(k+3\right)
Combine 8k and 4k to get 12k.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+12k^{2}+12k^{2}+36k+8k+24
Apply the distributive property by multiplying each term of 4k^{2}+12k+8 by each term of k+3.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+36k+8k+24
Combine 12k^{2} and 12k^{2} to get 24k^{2}.
k^{4}+6k^{3}+11k^{2}+6k+4k^{3}+24k^{2}+44k+24
Combine 36k and 8k to get 44k.
k^{4}+10k^{3}+11k^{2}+6k+24k^{2}+44k+24
Combine 6k^{3} and 4k^{3} to get 10k^{3}.
k^{4}+10k^{3}+35k^{2}+6k+44k+24
Combine 11k^{2} and 24k^{2} to get 35k^{2}.
k^{4}+10k^{3}+35k^{2}+50k+24
Combine 6k and 44k to get 50k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}