Factor
k\left(k-4\right)\left(k+11\right)
Evaluate
k\left(k-4\right)\left(k+11\right)
Share
Copied to clipboard
k\left(k^{2}+7k-44\right)
Factor out k.
a+b=7 ab=1\left(-44\right)=-44
Consider k^{2}+7k-44. Factor the expression by grouping. First, the expression needs to be rewritten as k^{2}+ak+bk-44. To find a and b, set up a system to be solved.
-1,44 -2,22 -4,11
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -44.
-1+44=43 -2+22=20 -4+11=7
Calculate the sum for each pair.
a=-4 b=11
The solution is the pair that gives sum 7.
\left(k^{2}-4k\right)+\left(11k-44\right)
Rewrite k^{2}+7k-44 as \left(k^{2}-4k\right)+\left(11k-44\right).
k\left(k-4\right)+11\left(k-4\right)
Factor out k in the first and 11 in the second group.
\left(k-4\right)\left(k+11\right)
Factor out common term k-4 by using distributive property.
k\left(k-4\right)\left(k+11\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}