Solve for a
\left\{\begin{matrix}a=\frac{2gk}{k^{2}-8}\text{, }&|k|\neq 2\sqrt{2}\\a\in \mathrm{R}\text{, }&g=0\text{ and }|k|=2\sqrt{2}\end{matrix}\right.
Solve for g
\left\{\begin{matrix}g=\frac{a\left(k^{2}-8\right)}{2k}\text{, }&k\neq 0\\g\in \mathrm{R}\text{, }&a=0\text{ and }k=0\end{matrix}\right.
Share
Copied to clipboard
k^{2}a-8a=2kg
Add 2kg to both sides. Anything plus zero gives itself.
\left(k^{2}-8\right)a=2kg
Combine all terms containing a.
\left(k^{2}-8\right)a=2gk
The equation is in standard form.
\frac{\left(k^{2}-8\right)a}{k^{2}-8}=\frac{2gk}{k^{2}-8}
Divide both sides by k^{2}-8.
a=\frac{2gk}{k^{2}-8}
Dividing by k^{2}-8 undoes the multiplication by k^{2}-8.
-2kg-8a=-k^{2}a
Subtract k^{2}a from both sides. Anything subtracted from zero gives its negation.
-2kg=-k^{2}a+8a
Add 8a to both sides.
-2gk=-ak^{2}+8a
Reorder the terms.
\left(-2k\right)g=8a-ak^{2}
The equation is in standard form.
\frac{\left(-2k\right)g}{-2k}=\frac{a\left(8-k^{2}\right)}{-2k}
Divide both sides by -2k.
g=\frac{a\left(8-k^{2}\right)}{-2k}
Dividing by -2k undoes the multiplication by -2k.
g=\frac{ak}{2}-\frac{4a}{k}
Divide a\left(-k^{2}+8\right) by -2k.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}