Solve for k
k = \frac{125 \sqrt{41}}{82} \approx 9.760860118
k = -\frac{125 \sqrt{41}}{82} \approx -9.760860118
Share
Copied to clipboard
k^{2}=\frac{25\left(18\times 41-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Cancel out 2\times 2 in both numerator and denominator.
k^{2}=\frac{25\left(738-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Multiply 18 and 41 to get 738.
k^{2}=\frac{25\left(738-288\right)^{2}}{9\times 9\times 16\times 41}
Multiply 9 and 32 to get 288.
k^{2}=\frac{25\times 450^{2}}{9\times 9\times 16\times 41}
Subtract 288 from 738 to get 450.
k^{2}=\frac{25\times 202500}{9\times 9\times 16\times 41}
Calculate 450 to the power of 2 and get 202500.
k^{2}=\frac{5062500}{9\times 9\times 16\times 41}
Multiply 25 and 202500 to get 5062500.
k^{2}=\frac{5062500}{81\times 16\times 41}
Multiply 9 and 9 to get 81.
k^{2}=\frac{5062500}{1296\times 41}
Multiply 81 and 16 to get 1296.
k^{2}=\frac{5062500}{53136}
Multiply 1296 and 41 to get 53136.
k^{2}=\frac{15625}{164}
Reduce the fraction \frac{5062500}{53136} to lowest terms by extracting and canceling out 324.
k=\frac{125\sqrt{41}}{82} k=-\frac{125\sqrt{41}}{82}
Take the square root of both sides of the equation.
k^{2}=\frac{25\left(18\times 41-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Cancel out 2\times 2 in both numerator and denominator.
k^{2}=\frac{25\left(738-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Multiply 18 and 41 to get 738.
k^{2}=\frac{25\left(738-288\right)^{2}}{9\times 9\times 16\times 41}
Multiply 9 and 32 to get 288.
k^{2}=\frac{25\times 450^{2}}{9\times 9\times 16\times 41}
Subtract 288 from 738 to get 450.
k^{2}=\frac{25\times 202500}{9\times 9\times 16\times 41}
Calculate 450 to the power of 2 and get 202500.
k^{2}=\frac{5062500}{9\times 9\times 16\times 41}
Multiply 25 and 202500 to get 5062500.
k^{2}=\frac{5062500}{81\times 16\times 41}
Multiply 9 and 9 to get 81.
k^{2}=\frac{5062500}{1296\times 41}
Multiply 81 and 16 to get 1296.
k^{2}=\frac{5062500}{53136}
Multiply 1296 and 41 to get 53136.
k^{2}=\frac{15625}{164}
Reduce the fraction \frac{5062500}{53136} to lowest terms by extracting and canceling out 324.
k^{2}-\frac{15625}{164}=0
Subtract \frac{15625}{164} from both sides.
k=\frac{0±\sqrt{0^{2}-4\left(-\frac{15625}{164}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{15625}{164} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-\frac{15625}{164}\right)}}{2}
Square 0.
k=\frac{0±\sqrt{\frac{15625}{41}}}{2}
Multiply -4 times -\frac{15625}{164}.
k=\frac{0±\frac{125\sqrt{41}}{41}}{2}
Take the square root of \frac{15625}{41}.
k=\frac{125\sqrt{41}}{82}
Now solve the equation k=\frac{0±\frac{125\sqrt{41}}{41}}{2} when ± is plus.
k=-\frac{125\sqrt{41}}{82}
Now solve the equation k=\frac{0±\frac{125\sqrt{41}}{41}}{2} when ± is minus.
k=\frac{125\sqrt{41}}{82} k=-\frac{125\sqrt{41}}{82}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}