Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

k^{2}=\frac{25\left(18\times 41-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Cancel out 2\times 2 in both numerator and denominator.
k^{2}=\frac{25\left(738-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Multiply 18 and 41 to get 738.
k^{2}=\frac{25\left(738-288\right)^{2}}{9\times 9\times 16\times 41}
Multiply 9 and 32 to get 288.
k^{2}=\frac{25\times 450^{2}}{9\times 9\times 16\times 41}
Subtract 288 from 738 to get 450.
k^{2}=\frac{25\times 202500}{9\times 9\times 16\times 41}
Calculate 450 to the power of 2 and get 202500.
k^{2}=\frac{5062500}{9\times 9\times 16\times 41}
Multiply 25 and 202500 to get 5062500.
k^{2}=\frac{5062500}{81\times 16\times 41}
Multiply 9 and 9 to get 81.
k^{2}=\frac{5062500}{1296\times 41}
Multiply 81 and 16 to get 1296.
k^{2}=\frac{5062500}{53136}
Multiply 1296 and 41 to get 53136.
k^{2}=\frac{15625}{164}
Reduce the fraction \frac{5062500}{53136} to lowest terms by extracting and canceling out 324.
k=\frac{125\sqrt{41}}{82} k=-\frac{125\sqrt{41}}{82}
Take the square root of both sides of the equation.
k^{2}=\frac{25\left(18\times 41-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Cancel out 2\times 2 in both numerator and denominator.
k^{2}=\frac{25\left(738-9\times 32\right)^{2}}{9\times 9\times 16\times 41}
Multiply 18 and 41 to get 738.
k^{2}=\frac{25\left(738-288\right)^{2}}{9\times 9\times 16\times 41}
Multiply 9 and 32 to get 288.
k^{2}=\frac{25\times 450^{2}}{9\times 9\times 16\times 41}
Subtract 288 from 738 to get 450.
k^{2}=\frac{25\times 202500}{9\times 9\times 16\times 41}
Calculate 450 to the power of 2 and get 202500.
k^{2}=\frac{5062500}{9\times 9\times 16\times 41}
Multiply 25 and 202500 to get 5062500.
k^{2}=\frac{5062500}{81\times 16\times 41}
Multiply 9 and 9 to get 81.
k^{2}=\frac{5062500}{1296\times 41}
Multiply 81 and 16 to get 1296.
k^{2}=\frac{5062500}{53136}
Multiply 1296 and 41 to get 53136.
k^{2}=\frac{15625}{164}
Reduce the fraction \frac{5062500}{53136} to lowest terms by extracting and canceling out 324.
k^{2}-\frac{15625}{164}=0
Subtract \frac{15625}{164} from both sides.
k=\frac{0±\sqrt{0^{2}-4\left(-\frac{15625}{164}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{15625}{164} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-\frac{15625}{164}\right)}}{2}
Square 0.
k=\frac{0±\sqrt{\frac{15625}{41}}}{2}
Multiply -4 times -\frac{15625}{164}.
k=\frac{0±\frac{125\sqrt{41}}{41}}{2}
Take the square root of \frac{15625}{41}.
k=\frac{125\sqrt{41}}{82}
Now solve the equation k=\frac{0±\frac{125\sqrt{41}}{41}}{2} when ± is plus.
k=-\frac{125\sqrt{41}}{82}
Now solve the equation k=\frac{0±\frac{125\sqrt{41}}{41}}{2} when ± is minus.
k=\frac{125\sqrt{41}}{82} k=-\frac{125\sqrt{41}}{82}
The equation is now solved.