Solve for k (complex solution)
k=\sqrt{86}-3\approx 6.273618495
k=-\left(\sqrt{86}+3\right)\approx -12.273618495
Solve for k
k=\sqrt{86}-3\approx 6.273618495
k=-\sqrt{86}-3\approx -12.273618495
Share
Copied to clipboard
k^{2}+6k-80=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k^{2}+6k-80-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
k^{2}+6k-80-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
k^{2}+6k-77=0
Subtract -3 from -80.
k=\frac{-6±\sqrt{6^{2}-4\left(-77\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-6±\sqrt{36-4\left(-77\right)}}{2}
Square 6.
k=\frac{-6±\sqrt{36+308}}{2}
Multiply -4 times -77.
k=\frac{-6±\sqrt{344}}{2}
Add 36 to 308.
k=\frac{-6±2\sqrt{86}}{2}
Take the square root of 344.
k=\frac{2\sqrt{86}-6}{2}
Now solve the equation k=\frac{-6±2\sqrt{86}}{2} when ± is plus. Add -6 to 2\sqrt{86}.
k=\sqrt{86}-3
Divide -6+2\sqrt{86} by 2.
k=\frac{-2\sqrt{86}-6}{2}
Now solve the equation k=\frac{-6±2\sqrt{86}}{2} when ± is minus. Subtract 2\sqrt{86} from -6.
k=-\sqrt{86}-3
Divide -6-2\sqrt{86} by 2.
k=\sqrt{86}-3 k=-\sqrt{86}-3
The equation is now solved.
k^{2}+6k-80=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}+6k-80-\left(-80\right)=-3-\left(-80\right)
Add 80 to both sides of the equation.
k^{2}+6k=-3-\left(-80\right)
Subtracting -80 from itself leaves 0.
k^{2}+6k=77
Subtract -80 from -3.
k^{2}+6k+3^{2}=77+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+6k+9=77+9
Square 3.
k^{2}+6k+9=86
Add 77 to 9.
\left(k+3\right)^{2}=86
Factor k^{2}+6k+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+3\right)^{2}}=\sqrt{86}
Take the square root of both sides of the equation.
k+3=\sqrt{86} k+3=-\sqrt{86}
Simplify.
k=\sqrt{86}-3 k=-\sqrt{86}-3
Subtract 3 from both sides of the equation.
k^{2}+6k-80=-3
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k^{2}+6k-80-\left(-3\right)=-3-\left(-3\right)
Add 3 to both sides of the equation.
k^{2}+6k-80-\left(-3\right)=0
Subtracting -3 from itself leaves 0.
k^{2}+6k-77=0
Subtract -3 from -80.
k=\frac{-6±\sqrt{6^{2}-4\left(-77\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 6 for b, and -77 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-6±\sqrt{36-4\left(-77\right)}}{2}
Square 6.
k=\frac{-6±\sqrt{36+308}}{2}
Multiply -4 times -77.
k=\frac{-6±\sqrt{344}}{2}
Add 36 to 308.
k=\frac{-6±2\sqrt{86}}{2}
Take the square root of 344.
k=\frac{2\sqrt{86}-6}{2}
Now solve the equation k=\frac{-6±2\sqrt{86}}{2} when ± is plus. Add -6 to 2\sqrt{86}.
k=\sqrt{86}-3
Divide -6+2\sqrt{86} by 2.
k=\frac{-2\sqrt{86}-6}{2}
Now solve the equation k=\frac{-6±2\sqrt{86}}{2} when ± is minus. Subtract 2\sqrt{86} from -6.
k=-\sqrt{86}-3
Divide -6-2\sqrt{86} by 2.
k=\sqrt{86}-3 k=-\sqrt{86}-3
The equation is now solved.
k^{2}+6k-80=-3
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
k^{2}+6k-80-\left(-80\right)=-3-\left(-80\right)
Add 80 to both sides of the equation.
k^{2}+6k=-3-\left(-80\right)
Subtracting -80 from itself leaves 0.
k^{2}+6k=77
Subtract -80 from -3.
k^{2}+6k+3^{2}=77+3^{2}
Divide 6, the coefficient of the x term, by 2 to get 3. Then add the square of 3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+6k+9=77+9
Square 3.
k^{2}+6k+9=86
Add 77 to 9.
\left(k+3\right)^{2}=86
Factor k^{2}+6k+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+3\right)^{2}}=\sqrt{86}
Take the square root of both sides of the equation.
k+3=\sqrt{86} k+3=-\sqrt{86}
Simplify.
k=\sqrt{86}-3 k=-\sqrt{86}-3
Subtract 3 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}