Solve for k
k=-\frac{5\left(16-9x\right)}{3-2x}
x\neq \frac{3}{2}
Solve for x
x=\frac{3k+80}{2k+45}
k\neq -\frac{45}{2}
Graph
Share
Copied to clipboard
k\left(2x-3\right)+15\left(3x-7\right)=-25
Multiply both sides of the equation by -5.
2kx-3k+15\left(3x-7\right)=-25
Use the distributive property to multiply k by 2x-3.
2kx-3k+45x-105=-25
Use the distributive property to multiply 15 by 3x-7.
2kx-3k-105=-25-45x
Subtract 45x from both sides.
2kx-3k=-25-45x+105
Add 105 to both sides.
2kx-3k=80-45x
Add -25 and 105 to get 80.
\left(2x-3\right)k=80-45x
Combine all terms containing k.
\frac{\left(2x-3\right)k}{2x-3}=\frac{80-45x}{2x-3}
Divide both sides by 2x-3.
k=\frac{80-45x}{2x-3}
Dividing by 2x-3 undoes the multiplication by 2x-3.
k=\frac{5\left(16-9x\right)}{2x-3}
Divide -45x+80 by 2x-3.
k\left(2x-3\right)+15\left(3x-7\right)=-25
Multiply both sides of the equation by -5.
2kx-3k+15\left(3x-7\right)=-25
Use the distributive property to multiply k by 2x-3.
2kx-3k+45x-105=-25
Use the distributive property to multiply 15 by 3x-7.
2kx+45x-105=-25+3k
Add 3k to both sides.
2kx+45x=-25+3k+105
Add 105 to both sides.
2kx+45x=80+3k
Add -25 and 105 to get 80.
\left(2k+45\right)x=80+3k
Combine all terms containing x.
\left(2k+45\right)x=3k+80
The equation is in standard form.
\frac{\left(2k+45\right)x}{2k+45}=\frac{3k+80}{2k+45}
Divide both sides by 2k+45.
x=\frac{3k+80}{2k+45}
Dividing by 2k+45 undoes the multiplication by 2k+45.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}