Solve for j
j=\sqrt{157}+12\approx 24.529964086
j=12-\sqrt{157}\approx -0.529964086
Share
Copied to clipboard
j^{2}-24j=13
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
j^{2}-24j-13=13-13
Subtract 13 from both sides of the equation.
j^{2}-24j-13=0
Subtracting 13 from itself leaves 0.
j=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-13\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -24 for b, and -13 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
j=\frac{-\left(-24\right)±\sqrt{576-4\left(-13\right)}}{2}
Square -24.
j=\frac{-\left(-24\right)±\sqrt{576+52}}{2}
Multiply -4 times -13.
j=\frac{-\left(-24\right)±\sqrt{628}}{2}
Add 576 to 52.
j=\frac{-\left(-24\right)±2\sqrt{157}}{2}
Take the square root of 628.
j=\frac{24±2\sqrt{157}}{2}
The opposite of -24 is 24.
j=\frac{2\sqrt{157}+24}{2}
Now solve the equation j=\frac{24±2\sqrt{157}}{2} when ± is plus. Add 24 to 2\sqrt{157}.
j=\sqrt{157}+12
Divide 24+2\sqrt{157} by 2.
j=\frac{24-2\sqrt{157}}{2}
Now solve the equation j=\frac{24±2\sqrt{157}}{2} when ± is minus. Subtract 2\sqrt{157} from 24.
j=12-\sqrt{157}
Divide 24-2\sqrt{157} by 2.
j=\sqrt{157}+12 j=12-\sqrt{157}
The equation is now solved.
j^{2}-24j=13
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
j^{2}-24j+\left(-12\right)^{2}=13+\left(-12\right)^{2}
Divide -24, the coefficient of the x term, by 2 to get -12. Then add the square of -12 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
j^{2}-24j+144=13+144
Square -12.
j^{2}-24j+144=157
Add 13 to 144.
\left(j-12\right)^{2}=157
Factor j^{2}-24j+144. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(j-12\right)^{2}}=\sqrt{157}
Take the square root of both sides of the equation.
j-12=\sqrt{157} j-12=-\sqrt{157}
Simplify.
j=\sqrt{157}+12 j=12-\sqrt{157}
Add 12 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}