Solve for x
x=-4i
x=3i
Share
Copied to clipboard
ix^{2}-x+12i=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4i\times \left(12i\right)}}{2i}
This equation is in standard form: ax^{2}+bx+c=0. Substitute i for a, -1 for b, and 12i for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2i}
Multiply -4i times 12i.
x=\frac{-\left(-1\right)±\sqrt{49}}{2i}
Add 1 to 48.
x=\frac{-\left(-1\right)±7}{2i}
Take the square root of 49.
x=\frac{1±7}{2i}
The opposite of -1 is 1.
x=\frac{8}{2i}
Now solve the equation x=\frac{1±7}{2i} when ± is plus. Add 1 to 7.
x=-4i
Divide 8 by 2i.
x=-\frac{6}{2i}
Now solve the equation x=\frac{1±7}{2i} when ± is minus. Subtract 7 from 1.
x=3i
Divide -6 by 2i.
x=-4i x=3i
The equation is now solved.
ix^{2}-x+12i=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
ix^{2}-x+12i-12i=-12i
Subtract 12i from both sides of the equation.
ix^{2}-x=-12i
Subtracting 12i from itself leaves 0.
\frac{ix^{2}-x}{i}=\frac{-12i}{i}
Divide both sides by i.
x^{2}+\left(-\frac{1}{i}\right)x=\frac{-12i}{i}
Dividing by i undoes the multiplication by i.
x^{2}+ix=\frac{-12i}{i}
Divide -1 by i.
x^{2}+ix=-12
Divide -12i by i.
x^{2}+ix+\left(\frac{1}{2}i\right)^{2}=-12+\left(\frac{1}{2}i\right)^{2}
Divide i, the coefficient of the x term, by 2 to get \frac{1}{2}i. Then add the square of \frac{1}{2}i to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+ix-\frac{1}{4}=-12-\frac{1}{4}
Square \frac{1}{2}i.
x^{2}+ix-\frac{1}{4}=-\frac{49}{4}
Add -12 to -\frac{1}{4}.
\left(x+\frac{1}{2}i\right)^{2}=-\frac{49}{4}
Factor x^{2}+ix-\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}i\right)^{2}}=\sqrt{-\frac{49}{4}}
Take the square root of both sides of the equation.
x+\frac{1}{2}i=\frac{7}{2}i x+\frac{1}{2}i=-\frac{7}{2}i
Simplify.
x=3i x=-4i
Subtract \frac{1}{2}i from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}