Solve for m
m=-1+\frac{1}{3}i\approx -1+0.333333333i
Share
Copied to clipboard
i-6m+4=7-3m
Use the distributive property to multiply -2 by 3m-2.
i-6m+4+3m=7
Add 3m to both sides.
i-3m+4=7
Combine -6m and 3m to get -3m.
-3m+4=7-i
Subtract i from both sides.
-3m=7-i-4
Subtract 4 from both sides.
-3m=7-4-i
Subtract 4 from 7-i by subtracting corresponding real and imaginary parts.
-3m=3-i
Subtract 4 from 7 to get 3.
m=\frac{3-i}{-3}
Divide both sides by -3.
m=-1+\frac{1}{3}i
Divide 3-i by -3 to get -1+\frac{1}{3}i.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}