Evaluate
\frac{1}{2}+\frac{1}{2}i=0.5+0.5i
Real Part
\frac{1}{2} = 0.5
Share
Copied to clipboard
i\left(1-\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
i\left(1-\frac{1\left(1+i\right)}{1^{2}-i^{2}}\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
i\left(1-\frac{1\left(1+i\right)}{2}\right)
By definition, i^{2} is -1. Calculate the denominator.
i\left(1-\frac{1+i}{2}\right)
Multiply 1 and 1+i to get 1+i.
i\left(1+\left(-\frac{1}{2}-\frac{1}{2}i\right)\right)
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
i\left(1-\frac{1}{2}-\frac{1}{2}i\right)
Combine the real and imaginary parts in numbers 1 and -\frac{1}{2}-\frac{1}{2}i.
i\left(\frac{1}{2}-\frac{1}{2}i\right)
Add 1 to -\frac{1}{2}.
\frac{1}{2}i-\frac{1}{2}i^{2}
Multiply i times \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}i-\frac{1}{2}\left(-1\right)
By definition, i^{2} is -1.
\frac{1}{2}+\frac{1}{2}i
Do the multiplications. Reorder the terms.
Re(i\left(1-\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right))
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(i\left(1-\frac{1\left(1+i\right)}{1^{2}-i^{2}}\right))
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(i\left(1-\frac{1\left(1+i\right)}{2}\right))
By definition, i^{2} is -1. Calculate the denominator.
Re(i\left(1-\frac{1+i}{2}\right))
Multiply 1 and 1+i to get 1+i.
Re(i\left(1+\left(-\frac{1}{2}-\frac{1}{2}i\right)\right))
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(i\left(1-\frac{1}{2}-\frac{1}{2}i\right))
Combine the real and imaginary parts in numbers 1 and -\frac{1}{2}-\frac{1}{2}i.
Re(i\left(\frac{1}{2}-\frac{1}{2}i\right))
Add 1 to -\frac{1}{2}.
Re(\frac{1}{2}i-\frac{1}{2}i^{2})
Multiply i times \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}i-\frac{1}{2}\left(-1\right))
By definition, i^{2} is -1.
Re(\frac{1}{2}+\frac{1}{2}i)
Do the multiplications in \frac{1}{2}i-\frac{1}{2}\left(-1\right). Reorder the terms.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}