Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

i\left(1-\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right)
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
i\left(1-\frac{1\left(1+i\right)}{1^{2}-i^{2}}\right)
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
i\left(1-\frac{1\left(1+i\right)}{2}\right)
By definition, i^{2} is -1. Calculate the denominator.
i\left(1-\frac{1+i}{2}\right)
Multiply 1 and 1+i to get 1+i.
i\left(1+\left(-\frac{1}{2}-\frac{1}{2}i\right)\right)
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
i\left(1-\frac{1}{2}-\frac{1}{2}i\right)
Combine the real and imaginary parts in numbers 1 and -\frac{1}{2}-\frac{1}{2}i.
i\left(\frac{1}{2}-\frac{1}{2}i\right)
Add 1 to -\frac{1}{2}.
\frac{1}{2}i-\frac{1}{2}i^{2}
Multiply i times \frac{1}{2}-\frac{1}{2}i.
\frac{1}{2}i-\frac{1}{2}\left(-1\right)
By definition, i^{2} is -1.
\frac{1}{2}+\frac{1}{2}i
Do the multiplications. Reorder the terms.
Re(i\left(1-\frac{1\left(1+i\right)}{\left(1-i\right)\left(1+i\right)}\right))
Multiply both numerator and denominator of \frac{1}{1-i} by the complex conjugate of the denominator, 1+i.
Re(i\left(1-\frac{1\left(1+i\right)}{1^{2}-i^{2}}\right))
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(i\left(1-\frac{1\left(1+i\right)}{2}\right))
By definition, i^{2} is -1. Calculate the denominator.
Re(i\left(1-\frac{1+i}{2}\right))
Multiply 1 and 1+i to get 1+i.
Re(i\left(1+\left(-\frac{1}{2}-\frac{1}{2}i\right)\right))
Divide 1+i by 2 to get \frac{1}{2}+\frac{1}{2}i.
Re(i\left(1-\frac{1}{2}-\frac{1}{2}i\right))
Combine the real and imaginary parts in numbers 1 and -\frac{1}{2}-\frac{1}{2}i.
Re(i\left(\frac{1}{2}-\frac{1}{2}i\right))
Add 1 to -\frac{1}{2}.
Re(\frac{1}{2}i-\frac{1}{2}i^{2})
Multiply i times \frac{1}{2}-\frac{1}{2}i.
Re(\frac{1}{2}i-\frac{1}{2}\left(-1\right))
By definition, i^{2} is -1.
Re(\frac{1}{2}+\frac{1}{2}i)
Do the multiplications in \frac{1}{2}i-\frac{1}{2}\left(-1\right). Reorder the terms.
\frac{1}{2}
The real part of \frac{1}{2}+\frac{1}{2}i is \frac{1}{2}.